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Setting

Multi-agent! Partially 
Observable!

Decentralised 
Execution!

Cooperative!

Centralised 
Learning!

(Figure by Jakob Foerster)
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Multi-Agent MDP

All agents see the global state s

Individual actions: ua ∈ U

State transitions: P(s ′|s,u) : S ×U× S → [0, 1]

Shared team reward: r(s,u) : S ×U→ R

Equivalent to an MDP with a factored action space
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Dec-POMDP

Observation function: O(s, a) : S × A→ Z

Action-observation history: τ a ∈ T ≡ (Z × U)∗

Decentralised policies: πa(ua|τ a) : T × U → [0, 1]

Natural decentralisation: communication and sensory constraints

Artificial decentralisation: coping with joint action space

Centralised learning of decentralised policies
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Single-Agent Policy Gradient Methods

Optimise πθ with gradient ascent on expected return:

Jθ = Es∼ρπ(s),u∼πθ(s,·) [r(s, u)]

Good when greedification is hard, e.g., continuous actions

Policy gradient theorem [Sutton et al. 2000]:

∇θJθ = Es∼ρπ(s),u∼πθ(s,·) [∇θ log πθ(u|s)Qπ(s, u)]

REINFORCE [Williams 1992]:

∇θJθ ≈ g(τ) =
T∑
t=0

∇θ log πθ(ut |st)Rt
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Single-Agent Actor-Critic Methods [Sutton et al. 00]
Reduce variance in g(τ) by learning a critic Q(s, u):

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)Q(st , ut)
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Single-Agent Baselines

Further reduce variance with a baseline b(s):

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)(Q(st , ut)− b(st))

b(s) = V (s) =⇒ Q(s, u)− b(s) = A(s, u), the advantage function:

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)A(st , ut)

TD-error rt + γV (st+1)− V (s) is an unbiased estimate of A(st , ut):

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)(rt + γV (st+1)− V (st))
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Single-Agent Deep Actor-Critic Methods

Actor and critic are both deep neural networks

I Convolutional and recurrent layers

I Actor and critic share layers

Both trained with stochastic gradient descent

I Actor trained on policy gradient

I Critic trained on TD(λ) or Sarsa(λ)
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Independent Actor-Critic

Inspired by independent Q-learning [Tan 1993]
I Each agent learns independently with its own actor and critic
I Treats other agents as part of the environment

Speed learning with parameter sharing
I Different inputs, including a, induce different behaviour
I Still independent: critics condition only on τ a and ua

Limitations:
I Nonstationary learning
I Hard to learn to coordinate
I Multi-agent credit assignment
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Counterfactual Multi-Agent Policy Gradients

Centralised critic: stabilise learning to coordinate

Counterfactual baseline: tackle multi-agent credit assignment

Efficient critic representation: scale to large NNs
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Centralised Critic

Centralisation → Hard greedification → actor-critic

ga(τ) =
T∑
t=0

∇θ log πθ(uat |τ at )(rt + γV (st+1)− V (st))
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Wonderful Life Utility [Wolpert & Tumer 2000]
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Difference Rewards [Tumer & Agogino 2007]

Per-agent shaped reward:

Da(s,u) = r(s,u)− r(s, (u−a, ca))

where ca is a default action

Key property:

Da(s, (u−a, u̇a)) > Da(s,u) =⇒ r(s, (u−a, u̇a)) > r(s, (u−a, a))
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Estimating Counterfactuals

How to estimate counterfactual r(s, (u−a, ca))?

Extra simulations are expensive

Learn a model of r(s,u) instead [Proper & Tumer 2012] [Colby et al. 2016]

COMA can just use the centralised critic Q(s,u)
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Choosing ca

Aristocrat utility [Wolper & Tumer 2002] uses expectation instead:

Da(s,u) = r(s,u)−
∑
ua

πa(ua|τ a)r(s, (u−a, ua))

but introduces self-consistency problems

COMA uses a counterfactual baseline instead:

ga(τ) =
T∑
t=0

∇θ log πθ(uat |τ at )Aa(st ,ut)

Aa(s,u) = Q(s,u)−
∑
ua

πa(ua|τ a)Q(s, (u−a, ua))

leaving gradient unbiased and ensuring self-consistency
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Efficient Critic Representation

Critic A2
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Starcraft
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Starcraft Micromanagement [Synnaeve et al. 2016]
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Decentralised Starcraft Micromanagement

x
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Baseline Algorithms

IAC-V: independent actor-critic with V (τ a) (TD error)

IAC-Q: independent actor-critic with A(τ a, ua) = Q(τ a, ua)− V (τ a)

Central-V: centralised critic V (s) (TD error)

Central-QV:

I Centralised critics Q(s,u) and V (s)

I Advantage gradient A(s,u) = Q(s,u)− V (s)

I COMA but with b(s) = V (s)
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COMA Results vs. Baselines (Average Performance)
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(d) 2 Dragoons & 3 Zealots
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COMA Results vs. Centralised (Best Agents)

Map COMA Heuristic DQN GMEZO

3 Marines 98 74 - -
5 Marines 95 98 99 100

5 Wraiths* 98 82 70 74
2 Dragoons & 3 Zealots 65 68 61 90
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COMA Paper

Counterfactual Multi-Agent Policy Gradients

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras,
Nantas Nardelli, and Shimon Whiteson

The Outstanding Student Paper of AAAI-18
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Factored Joint Value Functions

Independent learners: no model of joint value function

COMA: monolithic model of joint value function

Factored joint value functions can improve scalability
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Value Decomposition Networks

VDNs [Sunehag et al., 2017] factor per agent:

Qtot(τ ,u) =
n∑

a=1

Qi (τ
a, ua; θa)

Added benefit of decentralising the arg max:

arg max
u

Qtot(τ ,u) =

arg maxu1 Q1(τ1, u1)
...

arg maxun Qn(τn, un)



No more hard greedification =⇒ Q-learning, not actor-critic
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QMIX

To decentralise arg max, it suffices to enforce:

∂Qtot

∂Qa
≥ 0, ∀a ∈ A

Use three networks:

1 Agent network: represents Qi (τ
a, ua; θa)

2 Mixing network: represents Qtot(τ ) using nonnegative weights

3 Hypernetwork: generates weights of hypernetwork based on global s
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QMIX Networks
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Representational Capacity

linear &
monotonic

nonlinear &
monotonic

nonlinear &
nonmonotonic

VDN & QMIX just QMIX neither

Does it matter?
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Two-Step Game

VD
N

Q
M
IX
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Decentralised Starcraft II Micromanagement
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QMIX Results

(e) 3 Marines (f) 5 Marines (g) 8 Marines

(h) 2 Stalkers & 3 Zealots (i) 3 Stalkers & 5 Zealots (j) 1 Col., 3 Stalk. & 5 Zeal.
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QMIX Ablations

(k) 3 Marines (l) 2 Stalkers & 3 Zealots (m) 3 Stalkers & 5 Zealots
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QMIX Paper

QMIX: Monotonic Value Function Factorisation for
Deep Multi-Agent Reinforcement Learning

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt,
Gregory Farquhar, Jakob Foerster, and Shimon Whiteson

ICML-18
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Conclusions

Multi-agent learning is tractable in the right setting

Centralised learning of decentralised policies is such a setting

Deep learning give new hope for scalable factored value functions

Increasing reliance on critics → exploration is the next frontier
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