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ABSTRACT
We propose a benchmark problem for cooperative stochastic games
and interactive decision making. The sidewalk problem consists
of two agents, each navigating toward their own goal, where the
paths of the separate agents intersect. This requires one or both
agents to deviate from the optimal path in order to avoid collision.
Because both agents are dynamic, there is a need for prediction
and/or replanning. We formulate the problem as a stochastic game,
and provide details for implementing the problem in both discrete
and continuous state and action spaces. We evaluate popular algo-
rithms on variants of the problem, and we discuss generalizations
and suggest other benchmark problems for cooperative stochastic
games and interactive decision making.
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1 INTRODUCTION
Consider walking down the sidewalk when you encounter another
pedestrian heading in the opposite direction. Both you and the
other pedestrian adjust paths to prevent collision. Since both par-
ties make decisions in real time, it is possible that both adjusted
paths still conflict. This points out a difficulty humans have in in-
ferring the intentions of other agents. Robots and artificial agents
with slower response times, more limited dynamics, and less so-
phisticated reasoning capabilities are likely to find themselves even
more disadvantaged when faced with interactive decision making.

The sidewalk problem, illustrated in Figure 1, isolates several key
difficulties to adaptive learning. An agent must infer the intention
of other agents. Since the agent is acting under uncertainty, and
there is likely a necessity to re-plan, and the optimal plan in terms
of efficiency may not be the optimal plan in terms of flexibility. It is
likely that safer and better-in-expectation algorithms optimize for
the latter, choosing plans that are easily adaptable to new optima
in the event of a change.

This situation appears in and relates to various problems concern-
ing robots in unstructured environments. While it directly relates to
issues in crowd navigation [23, 24, 28] and is a contributing factor
to the frozen robot problem, the more general aspect of interactive
decision making also has important implications to autonomous
driving, where negotiating merges and lane changes are heavily
influenced by the highly variable behavior of other agents [1, 26].

This work does not propose a solution to the sidewalk problem,
although we do show several existing algorithms perform reason-
ably well. We are instead interested in how the problem elegantly
identifies a difficulty in interactive decision making, and propose
it as a benchmark which any successful algorithm must be able to
handle. We focus on formalizing and understanding the problem

Figure 1: The Sidewalk Problem. Each agent tries to effi-
ciently navigate to their respective goals, while avoiding col-
lisions.

and its implementation details so that it might be readily used as a
benchmark for people investigating issues related to cooperative
stochastic games and decision making. It is our hope that by provid-
ing a readily available benchmark we can create a concrete problem
to facilitate thinking about key issues in the field and allow a test
bed for researchers to quickly verify their theories.

We note that the sidewalk problem is similar in spirit to the grid
world problem presented by Hu and Wellman [13]. It also bares a
likeness to the adversarial soccer problem [5, 19]. None-the-less we
still see many papers on stochastic games that are purely theoreti-
cal, and contain no experiments [4, 6, 31], and we believe consistent
benchmarks will help encourage empirical demonstrations of theo-
retical work, making research more comparable.

In this paper we formalize the sidewalk problem as a stochas-
tic game. We pose two variants of the problem - one continuous
and one discrete. We discuss design parameters of the problem
e.g. setting the reward and noise. Additionally, we note that the
sidewalk problem is suitable for investigations into safe RL, which
we elaborate on. We then evaluate several existing algorithms on
the sidewalk problem and discuss generalizations to the sidewalk
problem, briefly sketching out other possible benchmark problems
for stochastic games.

2 FORMULATION
Stochastic games extend the Markov Decision Process (MDP) for-
malism common to reinforcement learning (RL) to enable the han-
dling of multiple agents, each of which influences the rewards and



4 2 0 2 4
4

3

2

1

0

1

2

3

4

Figure 2: Two variants of the sidewalk problem. The goal is for each agent to navigate to its respective goal without colliding
with the walls or other agent. Left: Discrete Domain. Right: Continuous Domain. The agents are modeled as unicycles, goals
are depicted as stars.

successor states with their actions. In this document we use the
subscript/superscript notationvariableaдent,actiontime . In a stochastic
game, at time t each agent i in state st takes an action ait according
to the policy π i . All the agents then transition to the state st+1 and
receive a reward r it .

Stochastic games can be described as as tuple ⟨S,A, P ,R⟩, where
S is the set of states, and A = {A1, . . . ,Am } is the joint action
space consisting of the set of each agent’s actions. Herem denotes
the number of agents. The reward functions R = {R1, . . . ,Rm }
describe the reward for each agent R : S × A → R. The transition
probability function P : S × A × S → [0, 1] describes how the state
evolves in response to all the agents’ collective actions.

Given a single decentralized agent i , the goal is to learn a policy
π i that maximizes the expected return

Ri =
T−1∑
t=0

γ t r it , (1)

where 0 < γ < 1 is a discount factor that imposes a decaying credit
assignment as time increases and allows for numerical stability in
the case of infinite horizons.

Note that the definition has as different reward variable for each
agent at each time step. This allows for the rewards to be indepen-
dent. However in practice the rewards between agents are often
correlated. For example, in an adversarial setting like a zero-sum
game

∑m
i=1 r

i = 0, one agent receiving a reward results in a penalty
to other agents. In domains like foraging tasks [15], penalties are
often not explicitly encoded, but the limited resources often impose
an adversarial setting since resources collected by one agent are
not available for another. Similarly, a reward can be structured to
encourage cooperation. For example [29] uses a reward

r i
′
= r i + αr j , (2)

where α is a constant that adjusts the agent’s attitude towards be-
ing cooperative. Just as domains might implicitly be adversarial,
domains may also be implicitly cooperative. For example, in au-
tonomous driving, collisions are bad for both agents, so both agents
collaborate to avoid accidents.

The sidewalk problem is an example of the latter, each agent
wants an efficient path that avoids collisions. The self-serving in-
terest of taking the optimal path trades off against the collaborative
interest of not colliding.

3 IMPLEMENTATION DETAILS
The sidewalk problem can be framed in a discrete or continuous
setting as shown in Figure 2.

3.1 State and Action Spaces
In the discrete setting the problem is a multi-agent variant of grid
world [27], agents occupy space in a 2D grid and navigate to a
goal. For the state representation, we use a grayscale image of the
grid world where each agent and goal have a unique fixed value to
prevent aliasing, see the left image of Figure 2. In the continuous
setting, agents have a position in 2D Cartesian coordinates. The
state is represented as a vector with four real valued parameters
per agent corresponding to the position, velocity, and rotation of
the agent: {x ,y,v,θ }. We implement both versions in python as
OpenAI gym environments 1.

Agents in the discrete setting have four actions: UP, DOWN,
LEFT, and RIGHT. The agent stops moving when it reaches the
goal.

In continuous space, the agent follows a unicycle model: the
agent can move forward, backward, or rotate. The action space
is two dimensional where the agent’s control is an acceleration
and a rotation. Rotations are bounded by ±π/8 per time step and
accelerations are bounded by ±1.0m/s2 per time step with a max
velocity of 1.0m/s . The control is selected so that the agent cannot
instantaneously stop.

3.2 Rewards
An agent is rewarded for reaching the goal and penalized for col-
liding with the other agent or the boundary of the world. A small
negative step cost is added to encourage the agent to reach the goal
efficiently.

In the sidewalk problem, there is a cstep step cost, a cдoal reward
for reaching the goal, and ccoll ision reward for colliding into a
wall or other agent. When discussing a single agent in a multi-
agent setting we refer to the single agent under consideration as
the ego agent. To encourage cooperation, the ego agent can be
rewarded for either agent reaching the goal i.e. each agent gets a
combined reward of ceдoдoal + c

other
дoal if both agents reach the goal.

Some care is needed to balance the step cost with the collision
penalty to prevent the agents from getting stuck in the local optima

1https://gym.openai.com/
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of remaining still for the entire trial. In our experiments we used
cstep = −0.01, cдoal = +0.5, ccoll ision = −0.5. This gives a reward
of +1 if both agents reach the goal.

This reward structure sets an explicit reward for collaboration.
As mentioned, the domain is implicitly collaborative, and the agent
should learn to avoid collisions without being rewarded for the
other agent’s success. We explore both explicit and implicit rewards
in Section 6.

Additionally, we consider using reward shaping [3, 20, 22] to
improve learning. In the discrete domain reward shaping is used to
encourage the agents to follow the center line by penalizing lateral
motions. This encourages the agent to deviate from the path as
little as possible, and drives the agents to interact with each other.
We can accomplish this with an ccenterd reward where d is the
distance from the central axis. We use a value of ccenter = −0.01
in our experiments.

The continuous domain is more difficult to learn. To direct the
agents to their goal, potential-based reward shaping is used to
make states further from the goal more negative. This provides a
gradient signal that encourages the agent to move towards the goal
and allows the agent to learn more quickly. We use a cpotentiald2
reward per time step where d is distance to the goal. A value of
cpotential = −0.0001 is used for our experiments.

3.3 Randomness
We can add uncertainty to both the state and action to ensure the
system has a robust policy. In the discrete setting agents take a ran-
dom action with probability n. We run experiments with different
amounts of randomness n = {0.0, 0.1, 0.2}.

In the continuous setting we add uniformly distributed random
noise to the actions and observations. the noise ϵ is selected from
the ranges ϵ = {±0.01,±0.5,±1.5}.

3.4 Timeouts
To bound the maximum length a given trial can run for, the envi-
ronment resets after a set number of steps. In our experiments, the
environments timeout at 300 time steps.

4 AGENTS
There is a chicken and egg problem developing interacting agents:
in order to learn to interact with an intelligent agent we first need
an intelligent agent for our ego agent to interact with. We use three
different place-holder agents for the other agent.

4.1 Random
Random agents mostly act as obstacles. They are unlikely to reach
the goal themselves, and their random behavior makes it so that a
single fixed trajectory is unlikely to succeed in all trials.

4.2 Dijkstra and Probabilistic Road Map
The shortest path to the goal can be computed using Dijkstra’s
algorithm. The costmap of transitions is created by weighting pixels
close to the ego agent as having high cost, so that the other agent
seeks to navigate around our agent as shown in Figure 3. The path
is recomputed at every time step. Since our grid world is relatively
small, recomputing has a small computational cost, but if larger
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Figure 3: Costmap and a Dijkstra agent’s resulting plan.
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Figure 4: Probabilistic Roadmap

worlds are of interest, the search could be made more efficient using
A* in place of Dijkstra and/or using algorithms that include anytime
planning [17] or replanning [16].

In the continuous domain we use a probabilistic road map (PRM)
[14] to discretize the search before running Dijkstra. An agent us-
ing a PRM plan often succeeds. Additionally the ego agent gets
rewarded for getting out of the way, so it is often possible to out-
perform a domain with a random agent by simply getting out of
the way and not crashing. A visualization of an agent following a
PRM is shown in Figure 4.

4.3 Centralized
Our third control method gives control of both agents to the plan-
ning/learning algorithm2. This results in a centralized strategy.

A centralized strategy simplifies the problem. Since the system
has control over both agents, there is no longer a need to interact
or re-plan. It has been shown that decentralized strategies can also
avoid interaction and replanning when the other agents’ policies
are known e.g. both agents move to their left.

5 SAFETY
An application we think the sidewalk domain is particularly well
suited for is safe RL. The random exploration typical to RL meth-
ods is not appropriate to physical systems which act in the real
world where failure cases result in real consequences. There have
been numerous efforts at designing learning processes with safe
exploration to mitigate the risks involved in training an RL system.
Broadly speaking, approaches can be classified into approaches that
modify the objective function [9, 11, 12, 18] and approaches that

2the specific learning algorithms we use are described in section 6.
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Figure 5: Success by Agent. In the Discrete setting (Left) we observe the most robust policy is learned by the centralized algo-
rithm. This is expected since a centralized algorithm avoids the difficulty of agent interaction. In the continuous domain, we
again see the centralized algorithm learns the most robust policy, but note that because the potential based reward shaping
was only associated to one agent, the other agent learned to get out of the way, and did not learn to reach the goal.

constrain the search space [2, 10, 26, 32, 33]. A review of safe RL is
presented by Garcia and Fernandez [8].

When safely learning the sidewalk problem, the agent should
never collide with the other agent or the walls. The sidewalk prob-
lem presents both a discrete and continuous domain that can be
used as a benchmark to explore safe RL.

6 EVALUATION
In this section we run experiments examining the performance
of learning algorithms against different agent types. We look at
the effects of noise on the agents, and make observations about
different reward functions.

6.1 Experimental Setup
Open AI has released code for several different types of deep learn-
ing agents implemented in TensorFlow [7]. The code base provides
a standardized test bed, allowing researchers to reproduce and build
upon the state of the art. We use the deep Q network (DQN) and
Trust Region Policy Optimization (TRPO) baseline implementations
to train agents on the sidewalk problem.

For handling discrete state/action spaces we use a DQN [21,
30] which applies the non-linear function approximation of deep
learning to boot-strapped procedures for learning a Q-function.
The DQN we use is a convolutional neural network with with 32
4 × 4 filters with a stride of 2, 64 4 × 4 filters with a stride of 2, and
64 2 × 2 filters with a stride of 1. The final fully connected hidden
layer has 256 nodes. The DQN uses a dueling architecture [30].

Trust Region Policy Optimization (TRPO) [25] is an approximate
policy iteration technique which we use to learn a policy for our
continuous state and action space sidewalk problem. The TRPO
network uses a multi-layer perceptron architecture with two hidden

layers, each with 32 nodes. This is the TRPO default in Open AI
baselines.

The networks are trained with different levels of noise for 2000
iterations in the discrete domain, and 5000 iterations in the continu-
ous domain. For comparing different agents we increase the discrete
domain to 5000 iterations because the learning of the centralized
agent had not stabilized. Results are averaged over three trials and
the shaded regions depict the standard errors.

6.2 Results
In the discrete setting, the DQN agent is able to learn a reasonable
policy in the presence of the three different agents. Results are
shown in Figure 5.

Typically the random agent (shown in light pink) blocks the goal
before eventually colliding with a wall. The DQN agent (dark pink)
is able to learn to a policy that is often able to avoid the random
agent and reach the goal.

The Dijkstra agent (light green) is often successful at reaching
the goal. The costmap often pushes the Dijkstra agent close to the
wall to avoid the ego agent, which has some possibility of resulting
in a collision as the randomness increases. The DQN agent (dark
green) tends to head straight towards the goal, minimizing the
lateral offset penalty, and forcing the Dijkstra agent to adjust.

The centralized DQN can learn to get both agents to their goals,
but the system has a harder time learning a good policy as evidenced
by requiring more training iterations and less monotonic learning
curves.

In the continuous setting, we again see the random agent (orange)
block the goal, and often collide into walls. A visualization of a
representative trajectory is shown in Figure 10d.

While the average success of TRPO agents trained with the
centralized and PRM agents are similar, the performance is quite
different. In the centralized domain, the potential based reward
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Figure 6: Varying Noise. This investigation was to determine how robust both the discrete and continuous agents are to noise.
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Figure 7: Collision by Agent. We see that the collisions of the centralized agents drop quickly compared to the learning curves
realted to success. This indicates that first the agents learn to avoid collisions and then the agent with the potential reward
learns to reach the goal.

shaping is relative to the ego agent only. We were interested in
how the reward shaping affected the agent. We see that the reward
shaping is important to learning in the continuous domain. The
centralized policy learned to move the agent without reward shap-
ing (light purple) safely out of the way, allowing the agent with
reward shaping (dark purple) to move straight for the goal. This
had the effect of minimizing the potential cost, but only one agent
reached the goal. A sample trajectory is shown in Figure 10b. For
comparison, a sample trajectory where both agents have reward
shaping is shown in Figure 10c. It is interesting that the centralized
algorithm that only uses reward shaping on one agent gets stuck
in a local optima, even though we see that the random agent does
occasionally reach the goal.

The TRPO agent (dark blue) trained with the PRM agent (light
blue) gets to the goal in most trials but takes more circuitous paths,
adjusting for the other agent. The simple control used for the PRM
agent often successfully gets the agent to the goal, but can be a bit
slow and sometimes the system times out before the agent reaches
the goal. Also because the agent’s action is harder to predict, there
are more instances when the ego agent collides with the PRM agent.
A sample trajectory is shown in Figure 10a.

We also plot collision ratios in Figure 7. The collisions mostly
contain the same information as the successes, but comparing the
two plots, it can be seen that centralized TRPO first learns to avoid
collisions, and then starts moving toward the goal. Additionally, we
see that TRPO with a random agent makes faster progress when
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Figure 9: Extension to Multi-agent systems where instead of
two agents there are two groups of agents. If there is not suf-
ficient room for any agent to move to the side, it creates an
increased need to coordinate and time movement through
space.

it comes to reaching the goal, and comparatively slower progress
when it comes to avoiding collisions.

The plots in Figure 6 show the effect of noise on the learned
system. As expected more noise makes the problem more difficult.
This test was to determine what amounts of the noise the agents
can handle.

We also looked at the difference between explicitly rewarding
an agent for the other agent’s good performance, vs keeping the
reward self-centered. Results are shown in Figure 8. We see that
explicitly specifying the reward leads to improved performance. We
hypothesize that this is because the explicit reward more strongly
encourages safe interactions, and discourages paths that force the
PRM agent to adjust in ways that might lead to a collision. Repre-
sentative trajectories of each approach are shown in Figure 10.

7 GENERALIZATION AND OTHER
BENCHMARKS

The sidewalk problem can trivially be extended to multiple agents.
However, there are several possible strategies to layout the agents.
One strategy is to randomly generate agents and goals. A more

structured bottleneck can be created by positioning agents in a circle
where goals are on the opposite side of the circle, thereby driving all
agents to pass through the center of the circle. Alternatively, agents
could be arranged in teams as shown in Figure 9. With multiple
agents side by side there is an increased need to monitor space and
time as some agents will have to wait to allow other agents to pass.

While the multi-agent setting introduces and amplifies impor-
tant challenges, having many agents can make it more difficult to
analyze what is happening. For this reason, we sketch the idea for
two other baselines for cooperative decision making.

To incorporate the need to wait into temporal decision making
problem, we propose a problem we call the three stooges problem.
Two agents each wish to pass through a door to get to a goal on the
other side. Rewards are based on the time it takes to reach the goal,
however the door is too narrow for both agents to pass through
and a collision results in a failure. As a result, agents must learn to
appropriately wait or not wait, in order to prevent collisions and
also not freeze.

In the three stooges problem, a deadlock can occur if both agents
wait at the door. More emphasis can be placed on resolving dead-
locks in a third benchmark problem, which we call the zipper merge.
In the zipper merge problem, two cars drive in adjacent lanes with
each car wishing to navigate to the other cars lane.

8 CONCLUSION
We proposed the sidewalk problem as a benchmark for coopera-
tive decision making. We formalized the benchmark problem as
a stochastic game, described in detail how the problem could be
implemented as either a discrete or continuous domain, and ex-
plored several design choices related to the problem including the
nature of the reward, the amount of noise affecting the agents, and
the choice of algorithm to use for the opposing agent to create
different situations. Additionally, we discussed how the sidewalk
problem could be extended and sketched out other possible ideas
for cooperative game benchmarks.
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