
Self-Organizing Maps as a Storage and Transfer Mechanism in
Reinforcement Learning

Thommen George Karimpanal
Singapore University of Technology and Design

thommen_george@mymail.sutd.edu.sg

Roland Bouffanais
Singapore University of Technology and Design

bouffanais@sutd.edu.sg

ABSTRACT
The idea of reusing information from previously learned tasks
(source tasks) for the learning of new tasks (target tasks) has the
potential to significantly improve the sample efficiency reinforce-
ment learning agents. In this work, we describe an approach to
concisely store and represent learned task knowledge, and reuse it
by allowing it to guide the exploration of an agent while it learns
new tasks. In order to do so, we use a measure of similarity that is
defined directly in the space of parameterized representations of
the value functions. This similarity measure is also used as a basis
for a variant of the growing self-organizing map algorithm, which
is simultaneously used to enable the storage of previously acquired
task knowledge in an adaptive and scalable manner. We empirically
validate our approach in a simulated navigation environment and
discuss possible extensions to this approach along with potential
applications where it could be particularly useful.

KEYWORDS
Self-organizing maps; Q-learning; Transfer Learning; Multi-task
Reinforcement Learning; Continual Learning

1 INTRODUCTION
The use of off-policy algorithms [5] in reinforcement learning
(RL) [15] has enabled the learning of multiple tasks in parallel.
This is particularly useful for agents operating in the real-world,
where a number of tasks are likely to be encountered, and may
be required to be learned [6, 16, 21]. Ideally, as an agent learns
more and more tasks through its interactions with the environ-
ment, it should be able to efficiently store and extract meaningful
information, which could be useful for accelerating its learning on
new, possibly related tasks. This area of research, which aims at
addressing the issue of effectively reusing previously accumulated
knowledge is referred to as transfer learning [17].

Formally, transfer learning is an approach to improve learning
performance on a new ‘target’ taskMT , using accumulated knowl-
edge from a set of ‘source’ tasks, MS = {Ms1 ...Msi ...Msn }. Here,
each task M is a Markov Decision Process (MDP) [11], such that
M = {S,A,T,R}, where S is the state space, A is the action
space, T is the transition function, and R is the reward function.
In this work, we address the relatively simple case where tasks
vary only in the reward function R, while S,A and T remain fixed
across the tasks. For knowledge transfer to be effective, source
tasks need to be selected appropriately. Reusing knowledge from
an inappropriately selected source task could lead to negative trans-
fer [8, 17], which is detrimental to the learning of the target task.
In order to avoid such problems and ensure beneficial knowledge

transfer, a number of MDP similarity metrics [3, 4] have been pro-
posed. However, it has been shown that the utility of a particular
MDP similarity metric depends on the type of transfer mechanism
used [3]. In addition, these transfer mechanisms are generally not
designed to handle situations involving a large number of source
tasks. This could be limiting for both embodied as well as virtual
agents operating in the real-world. For such an agent, the value
functions pertaining to hundreds or thousands of tasks may be
learned over a period of time. Some of these tasks may be very
similar to each other, which could result in considerable redun-
dancy in the stored value function information. From a continual
learning perspective, a suitable mechanism may be needed to en-
able the storage of such information in a scalable manner. In the
approach described here, the knowledge of a task is assumed to be
contained in the value function (Q-function) associated with it. We
assume that these value functions are represented using parameter
weights, which are learned from the agent’s interactions with its
environment. We define a cosine similarity metric within this value
function weight (parameter) space, and use this as a basis for main-
taining a scalable knowledge base, while simultaneously using it to
perform knowledge transfer across tasks.

The proposed mechanism enables the storage of value function
weight vectors using a variant of the growing self organizing map
(GSOM)[1]. The inputs to this GSOM algorithm consist of the value
function weights of new tasks, along with any representative value
function weights extracted from previously learned tasks. The re-
sulting map would ideally correspond to value function weights
representative of previously acquired task knowledge, topologically
arranged in accordance with their relation to each other. As the
agent interacts with its environment and learns the value function
weights corresponding to new tasks, this new information is in-
corporated into the SOM, which evolves by growing to a suitable
size in order to sufficiently represent all of the agent’s gathered
knowledge. Each element/node of the resulting map is a variant of
the input value function weights (knowledge of previously learned
tasks). These variants are treated as solutions to arbitrary source
tasks, each of which is related to some degree to one of the previ-
ously learned tasks. The aim of storing knowledge in this manner is
not to retain the exact value function information corresponding to
all the previously learned tasks, but to maintain a compressed and
scalable knowledge base that can approximate the value function
weights of the previously learned tasks.

While learning a new target task, this knowledge base is used
to identify the most relevant source task, based on the same simi-
larity metric. The value function associated with this task is then
greedily exploited to provide the agent with action advice to guide
it towards achieving the target task. Due to random initialization,

the agent’s initial estimates of the value function weights corre-
sponding to the target task is poor. However, as it gathers more
experience through its interactions with the environment, these
estimates improve, which consequently improves its estimates of
the similarities between the target and source tasks. As a result, the
agent becomes more likely to receive relevant action advice from a
closely related source task. This action advice can be adopted, for
instance, on an ϵ-greedy basis, essentially substituting the agent’s
exploration strategy. In this way, the knowledge of source tasks
is used to merely guide the agent’s exploratory behavior, thereby
minimizing the risk of negative transfer which could have other-
wise occurred especially if value functions or representations were
directly transferred between the tasks.

Apart from maintaining an adaptive knowledge base of value
function weights related to previously learned tasks, the proposed
approach aims to leverage this knowledge base to make informed
exploration decisions, which could lead to faster learning of target
tasks. This could be especially useful in real-world scenarios where
factors such as learning speed and sample efficiency are critical,
and where several new tasks may need to be learned continuously,
as and when they are encountered. The overall structure of the
proposed methodology is depicted in Figure 1.

Figure 1: The overall structure of the proposed approach

2 RELATEDWORK
The sample efficiency of RL algorithms is one of the most critical as-
pects that determines the feasibility of its deployment in real-world
applications. Transfer learning is one of the mechanisms through
which this can be addressed. Consequently, numerous techniques
have been proposed [8, 17, 22] to efficiently reuse the knowledge
of learned tasks. A number of these [2, 3, 14] rely on a measure of
similarity between MDPs in order to choose an appropriate source
task to transfer from. However, this can be problematic, as no such
universal metric exists [3], and some of the useful ones may be
computationally expensive [2]. Here, the similarity metric used is
computationally inexpensive, and the degree of similarity between
two tasks is based solely on the value function weights associated
with them. Also, in the approach described here, once an appro-
priate source task is identified, its value functions are used solely
to extract action advice, which is used to guide the exploration
of the agent. Similar approaches to transfer learning using action
advice exist [20, 22, 23], where a teacher-student framework for
RL is adopted. The transfer mechanism described here is similar

in principle, but is inherently tied to the SOM-based approach for
maintaining the knowledge of learned tasks.

Other clustering approaches [3, 9, 19] have also been applied to
achieve transfer learning in RL. In one of the earliest notable ap-
proaches to transfer learning, Thrun et al. [19] described a method-
ology for transfer learning by clustering learning tasks using a
nearest neighbor clustering approach. Although similar approaches
can be used, the SOM-based approach described here preserves
the topological properties of the input space, due to which similar
behaviors are placed closer to one another. This could give us a
rough idea of the type of behavior to be expected, given some new,
arbitrary value function weights.

Perhaps the most closely related work is the ‘Actor-mimic’ [10]
approach, which also performs transfer using action advice. In this
approach, useful behaviors of a set of expert networks are com-
pressed into a single multi-task network, which is then used to
provide action advice in an ϵ−greedy manner. The authors also
report the problem of dramatically varying ranges of the value func-
tion across different tasks, which is resolved by using a Boltzmann
distribution function. In the present work, the use of the cosine
similarity metric resolves this issue and ensures that the similarity
measure between tasks is bounded.

In the context of continual learning [13], Ring et al. [12] described
a modular approach to assimilate the knowledge of complex tasks
using a training process that closely resembles SOM. In this ap-
proach, a complex task is decomposed into a number of simple
modules, such that modules close to each other correspond to sim-
ilar agent behaviors. Teng et al. [18] also proposed a SOM-based
approach to integrate domain knowledge and RL, with the aim of
developing agents that can continuously expand their knowledge in
real time. These ideas of knowledge assimilation are also reflected
in the present work. However, our approach also aims to reuse this
knowledge to aid the learning of other related tasks.

3 METHODOLOGY
In this work, we present an approach that enables the reuse of
knowledge from previously learned tasks to aid the learning of a
new task. Our approach consists of two fundamental mechanisms:
(a) the accumulation of learned value function weights into a knowl-
edge base in a scalable manner, and (b) the use of this knowledge
base to guide the agent during the learning of the target task. The
basis for these mechanisms is centered around the task similarity
metric we propose here. We consider two tasks to be similar based
on the cosine similarity between their corresponding learned value
function weight vectors. For instance, the cosine similarity cw1,w2
between two non-zero weight vectors ®w1 and ®w2 is given by:

cw1,w2 = ®w1. ®w2/| ®w1 | | ®w2 |. (1)

The key idea is that two tasks are more likely to be similar to each
other if they have similar feature weightings. Using such a similarity
metric has certain advantages, such as boundedness and the ability
to handle weight vectors with largely different magnitudes. That is,
even in the case of highly similar or dissimilar tasks, the cosine sim-
ilarity remains in the range [-1,1]. During the construction of the
scalable knowledge base, the mentioned similarity metric is used as
a basis for training the self-organizing map. Once this map is con-
structed, the cosine similarity is again used as a basis for selecting

2

an appropriate source task weight vector to guide the exploratory
behavior of the agent. We now describe these mechanisms in detail.

3.1 Knowledge Storage Using Self-Organizing
Map

A self-organizing map (SOM) [7] is a type of unsupervised neural
network used to produce a low-dimensional representation of its
high-dimensional training samples. Typically, a SOM is represented
as a two- or three-dimensional grid of nodes. Each node of the SOM
is initialized to be a randomly generated weight vector of the same
dimensions as the input vector. During the SOM training, an input
is presented to the network, and the node that is most similar to
this input is selected to be the ‘winner’. The winning node is then
updated towards the input vector under consideration. Other nodes
in the neighborhood are also influenced in a similar manner, but
as a function of their topological distances to the winner. The final
layout of a SOM is such that adjacent nodes have a greater degree
of similarity to each other in comparison to nodes that are far apart.
In this way, the SOM extracts the latent structure of the input space.

For our purposes, the knowledge of an RL task is assumed to be
contained in its parameterized representation of the value function
(Q−function), obtained using linear function approximation [15]. A
naïve approach to storing knowledge associated with multiple tasks
is to explicitly store their value function parameters/weights. Apart
from the scalability issue associated with such an approach, a high
degree of redundancy in the learned knowledge may arise if several
of these tasks are very similar or nearly identical to each other. A
more generalized approach to knowledge storage would be to store
the characteristic features of the weight vectors associated with
the learned tasks. The ability of the SOM to extract these features
in an unsupervised manner makes it an attractive choice for the
knowledge storage mechanism proposed here.

In our approach, the inputs to the SOM are learned value function
weights of previously learned tasks (input tasks). The hypothesis is
that after training, the weight vectors associated with each node in
the SOM have varying degrees of similarity to the input vectors,
and hence, correspond to value function weights of tasks which
may be related to the input tasks to varying degrees. Hence, each
node in the SOM could be assumed to contain the value function
information corresponding to a source task, and the weight vector
associated with an appropriately selected SOM node could serve
as source value function weights which could be used to guide the
exploration of the agent while learning a target task.

In a continual learning scenario, a number of tasks with largely
varying degrees of similarity (as per the similarity metric defined in
Equation (1)) with each other may be encountered. A SOM contain-
ing only a few number of nodes may not be able to represent the
knowledge of these tasks to a sufficient level of accuracy. Hence, the
size of the SOM may need to adapt dynamically as and when new
task knowledge is learned. We address this problem by allowing
the number of nodes in the SOM to change, using a mechanism
similar to that used in the GSOM algorithm. For a SOM containing
N nodes, each node ni is associated with an error eni such that for
a particular input vector ®wvj , if node nwin (with a corresponding
weight vector ®wsnwin) is the winner, the error enwin is updated as:

enwin ← enwin + 1 − cwvj ,wsnwin
. (2)

The term (1 − cwvj ,wsnwin
) in Equation (2) is proportional to the

Euclidean distance between the l2− normalized versions of input
vectors ®wvj and ®wsnwin . Hence, the error update equation (Equa-
tion (2)) is equivalent to that used in [1]. Once all the input vectors
are presented to the SOM, the total error, E of the network is com-

puted as E =
N∑
i=1

ei . This total error is computed for each iteration

of the SOM. In subsequent iterations, if the increase in the total
error exceeds a certain threshold GT , new nodes are spawned at
the boundaries of the SOM. The weight vectors of these nodes are
initialized to the mean of their neighbors, and are subsequently
modified by the SOM training process. Such a mechanism enables
the SOM to grow in size and representation capacity, thereby al-
lowing for a low network error to be achieved.

The nature of the described SOM algorithm is such that all the
input vectors are needed during the training. However, for applica-
tions such as robotics, where the agent may have limited on-board
memory, this may not be feasible. Thousands of tasks may be en-
countered during its lifetime, and the value function weights of all
these tasks would need to be explicitly stored in order to train the
SOM. Ideally, we would like the knowledge contained in the SOM
to adapt in an online manner, to include relevant information from
new tasks as and when they are learned. We achieve this online
adaptation by making modifications to the training mechanism of
the GSOM algorithm. Specifically, when a new task is learned, we
update the SOM by presenting the newly learned weights, together
with the weight vectors associated with the nodes of the SOM as
inputs to the GSOM algorithm. The resulting SOM is then utilized
for transfer. In summary, the weights of the SOM are recycled as
inputs while updating the knowledge base using the GSOM algo-
rithm. This can be observed in the overall structure of the proposed
approach, shown in Figure 1. The implicit assumption here is that
the weights associated with the SOM nodes sufficiently represent
the knowledge of the previously learned tasks. This approach of
updating the SOM knowledge base allows new knowledge to be
adaptively incorporated into the SOM, while obviating the need to
explicitly store the value function weights of all previously learned
tasks. The overall storage mechanism is summarized in Algorithm 1.

3.2 The Transfer Mechanism
Once the knowledge of previously learned tasks has been assim-
ilated into a SOM, it is reused to aid the learning of a target task.
The weight vector associated with each SOM node is treated as the
value function weight vector corresponding to an arbitrary source
task. Among these source value function weight vectors, the one
that is most similar (ws∗) to the target value function weight vector
wT is chosen for transfer. That is, s∗ = arдmax

i ∈N
(cwsi ,wT)

In order to actually perform the transfer, the selected source task
weights may be directly used to modify the value function weights
of the target task. However, an insufficient degree of similarity of
the source task weights could result in negative transfer. A safer
approach is to allow the selected source value function weights to
guide the exploratory actions of the agent. This guidance is provided
by allowing the agent to act greedily as per the selected source value
function weights with a fixed probability ϵ , while exploiting the
target value function that is being learned, with a probability of

3

Algorithm 1 Knowledge storage using self-organizing maps
1: Inputs:

wv = { ®wv1 ... ®wvi ... ®wvM } : A set of value function weight vec-
tors corresponding to M learned tasks. These are the input
vectors to the GSOM algorithm.
N : Initial number of nodes in the SOM
σ0 : Initial value of neighborhood function σ
τ1 : Time constant to control the neighborhood function
κ0 : Initial value of SOM learning rate κ
τ2 : Time constant to control the learning rate
ws = { ®ws1 ... ®wsi ... ®wsN } : Initial weight vectors associated with
the N nodes in the SOM
e : Error vector, initialized to be zero vector of length N
E = 0 : Initial value of average error
GT : Growth threshold parameter
Niter : Number of SOM iterations

2: for i = 1 : Niter do
3: Randomly pick an input vector ®x from wv
4: Select winning node nwin based on highest cosine similarity

to input vector x
5: σ = σ0 exp(−i/τ1)
6: κ = κ0 exp(−i/τ2)
7: for j = 1 : N do
8: Compute topological distance dnwin, j between nodes nwin

and j
9: h(nwin, j) = exp(−dnwin, j/2σ 2)
10: ®wsj = ®wsj + κ ∗ h(nwin, j) ∗ ∥ ®x − ®wsnwin ∥
11: end for
12: e(nwin) = e(nwin) + 1 − cx,wsnwin

13: Ei =
∑N
k=1 ek

14: if (Ei − Ei−1)/N > GT then
15: Spawn new nodes at the boundaries of the SOM
16: Expand the error vector, with the values of new nodes

initialized to the mean of the previous error vector.
17: Update N as per the number of new nodes added
18: end if
19: end for

1 − ϵ . Such an approach is more unlikely to lead to drastic drops in
the target task performance. In general, the guidance provided by
the most similar source value function weights can be expected to
allow the agent to execute more useful exploratory actions, thereby
leading to accelerated learning of the target task.

4 RESULTS
We use the knowledge storage and reuse mechanisms described in
Section 3 to accelerate the learning of target tasks in a navigation
environment. In order to evaluate the described knowledge storage
and reuse mechanisms, we allow the agent to explore and learn
multiple tasks in the simulated environment shown in Figure 2. The
environment is continuous, and the agent is assumed to be able to
sense its horizontal and vertical coordinates, which constitute its
state. The states are represented in the form of a feature vector ®Fa
containing 100 elements for each state dimension. While navigating
through the environment, the agent is allowed to choose from a

set of 9 different actions: moving forwards, backwards, sideways,
diagonally upwards or downwards to either side, or staying in place.
The velocities associated with these movements is set to be 6 units/s,
and new actions are executed every 200 ms.

As the agent executes actions in its environment, it autonomously
identifies tasks using an adaptive clustering approach similar to that
described in Karimpanal et al. [6]. The clustering is performed on
an additional feature vector ®Fe (environment feature vector) which
contains elements describing the presence or absence of specific
environment features. For instance, these features could represent
the presence or absence of a source of light, sound or other signals
from the environment that the agent is capable of sensing. In the
simulations described here, the environment feature vector ®Fe con-
tains 4 elements corresponding to 4 arbitrary environment stimuli
distributed at different locations in the environment. As the agent
interacts with its environment, clustering is performed on ®Fe in
an adaptive manner, which helps identify unique configurations
of ®Fe which may be of interest to the agent. During the agent’s
interactions with the environment, the mean of each discovered
cluster is treated as the environment feature vector associated with
the goal state of a distinct navigation task. In our simulations, the
agent eventually discovers 5 such tasks, the corresponding goal
locations of which are indicated by the colored regions in Figure 2.
The value function corresponding to each of these tasks is learned
using the Q − λ algorithm [15]. For Q−learning, the reward struc-
ture is such that the agent obtains a reward (100) when it is in the
goal state, a penalty (−100) for bumping into an obstacle, and a
living penalty (−10) for every other non-goal state. In each episode,
the agent starts from a random state and executes actions in the
environment till it reaches the associated navigation target region
(goal state), at which point, a positive reward is obtained, and the
episode terminates. For each Q−learning task, the full feature vec-
tor ®F (where ®F = { ®Fe ∪ ®Fa }) is used, and the learning rate α is set to
be 0.3, the discount factor γ is 0.9 and the trace decay parameter λ
is set to be 0.9. The other hyperparameters described in Algorithm
1 are set to the following values: N = 4, σ0 = 50, τ1 = 250, τ2 = 0.1,
GT = 0.3 and Niter = 1000.

0 10 20 30

0

10

20

30

1

3

2

5
4

Figure 2: The simulated continuous environment with the naviga-
tion goal states of different tasks (numbered from tasks 1 to 5), indi-
cated by the different colored circles.

4

Once a new navigation task t is identified, and its value function
weight vector wt is learned, we incorporate this new knowledge
into the SOM knowledge base. To do this, the value function weight
vector associated with this task, along with the weight vectors
associated with the SOM are presented as input vectors to Algo-
rithm 1. For instance, if the weight vectors of the SOM are given by
ws = { ®ws1 ... ®wsi ... ®wsN }, then the subsequent input vectors winputs
to Algorithm 1 are winputs = {ws ∪ ®wt }. By presenting the inputs
to the GSOM algorithm in this manner, the resulting SOM approxi-
mates and integrates previously learned task knowledge and the
knowledge of newly learned tasks.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0.99 0.964 0.801 0.831 0.801 0.937 0.992 0.995

0.974 0.946 0.829 0.78 0.768 0.95 0.989 0.991

0.915 0.89 0.835 0.652 0.668 0.946 0.974 0.976

0.844 0.812 0.741 0.877 0.782 0.89 0.939 0.949

0.778 0.793 0.808 0.739 0.674 0.806 0.882 0.905

0.955 0.937 0.928 0.905 0.816 0.716 0.803 0.839

0.993 0.984 0.971 0.948 0.892 0.819 0.737 0.789

0.996 0.991 0.978 0.956 0.913 0.859 0.795 0.74

Figure 3: A visual depiction of an 8 × 8 SOM resulting from the sim-
ulations. The color of each node is derived from the most similar
task in Figure 2. The intensity of the color is in proportion to the
value of this similarity metric (indicated over each SOM node).

Figure 3 shows a sample 8 × 8 SOM, which was learned by the
agent after 1000 Q−learning episodes. The color of each SOM node
in Figure 3 corresponds to the task in Figure 2 that has themaximum
cosine similarity between its value function weights and the weight
vector associated with the SOM node. Further, the brightness of
this color is in proportion to the value of this cosine similarity. In
Figure 3, these values are overlaid and displayed on top of each
node. The different colors and associated cosine similarity values of
each SOM node in Figure 3 suggests that the SOM stores knowledge
of a variety of related tasks in a structured manner.

It is also seen from Figure 3 that the nodes corresponding to
the knowledge of tasks that are most closely related to tasks 1, 4
and 5 are clustered together, and those related to tasks 2 and 3
are distinct, and are stored in separate clusters. In addition, the
allocation of the SOM nodes occurs as per the differences in the
tasks themselves. For example, in the SOM shown in Figure 3, 25
nodes are allocated to tasks that are most similar to task 3, 19
nodes to tasks related to task 2, and 20 nodes to tasks related to
tasks 1, 4 and 5 combined. This demonstrates that the allocation
of nodes is done as per the characteristics of the tasks, and not
merely according to the number of tasks. When a number of similar
tasks are learned, simply storing their value function weights would
result in significant redundancies. Such redundancies are avoided
by the SOM-based approach described here.

Figure 4: A sample plot of the nature of the learning improvements
brought about by SOM-based exploration (ϵ = 0.3, GT = 0.3).
The solid lines represent the mean of the average return for 10
Q−learning runs of 1000 episodes each, whereas the shaded region
marks the standard deviation associated with this data.

Although the SOM does not necessarily retain the exact value
functions of previously learned tasks, it can be used to guide the
exploration of an agent while learning a new task. This is especially
true if the new task is closely related to one of the previously
learned tasks. Figure 4 depicts this phenomenon for task 5 (ϵ = 0.3,
GT = 0.3), with higher returns being achieved at a significantly
faster rate using the SOM-based exploration strategy in Section 3.2.
In both exploration strategies, exploratory actions are executedwith
the same probability, but SOM-based exploration achieves a better
performance, as knowledge of related tasks (in this case, tasks 1 and
4) from previous experiences allows the agent to takemore informed
exploratory actions. This is also supported by Figure 5, which shows

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Agent-environment interactions

-0.5

0

0.5

1

C
o

s
in

e
 s

im
ila

ri
ty

 o
f

m
o

s
t

s
im

ila
r

s
o

u
rc

e
 t

a
s
k

Figure 5: Cosine similarity between a target task and its most simi-
lar source task as the agent interacts with its environment

the evolution of the cosine similarity between the value function
weights of the target task and the most similar weight vector in the
SOM as the agent interacts with its environment. With a greater
number of agent-environment interactions, the estimates of the
agent’s target task weight vector improves, and it receives more
relevant advice from the SOM. This trend is probably responsible
for the learning improvements seen in Figure 4.

Figure 6 shows the average return per episode for different tasks
and different values of ϵ , using the two exploration strategies. The

5

1 2 3 4 5
0

2000

4000

SOM-based exploration

-greedy exploration

1 2 3 4 5
0

2000

4000

1 2 3 4 5
0

1500

3000

A
v
e

ra
g

e
 r

e
tu

rn
 p

e
r

e
p

is
o

d
e

1 2 3 4 5

Tasks

-1000

0

1000

=0.7

=1

=0.1

=0.3

Figure 6: Comparison of the average returns accumulated for differ-
ent tasks using the SOM-based and ϵ− greedy exploration strategies

values plotted are averaged over 10 runs. The return is computed
after each episode by allowing the agent to greedily exploit the
value functions starting from 100 randomly chosen points in the
environment for 100 steps. As observed in Figure 6, SOM-based
exploration consistently results in higher average returns for related
tasks 4 and 5. Its performance on the unrelated tasks 2 and 3 are
generally comparable to that of the ϵ−greedy approach. Although
task 1 is related to tasks 4 and 5, it is the first task learned, and
hence, does not benefit from the use of previous knowledge. Hence,
the transfer advantage is not observed for task 1.

In addition to the improvements described, the SOM-based ap-
proach to conducting knowledge transfer also offers advantages in
terms of the scalability of knowledge storage. This is depicted in
Figure 7, which shows the number of nodes needed for storing the
knowledge of up to 1000 tasks, with different values of the GSOM
threshold parameter GT . It is clear that as the number of learned
tasks increases, the number of nodes required per task decreases,
making the SOM-based knowledge storage approach more viable.

0 200 400 600 800 1000

No. of Tasks

0

100

200

300

N
o

.
o

f
S

O
M

 e
le

m
e

n
ts

 r
e

q
u

ir
e

d
 t

o
 s

to
re

 t
a

s
k
s

G
T
=0.3

G
T
=0.5

G
T
=0.7

Figure 7: The number of SOM nodes used to store knowledge for up
to 1000 tasks, for different values of growth threshold GT

The simulations demonstrate that using a SOM knowledge base
to guide the agent’s exploratory actions help achieve faster learning
when the target tasks are related to the previously learned tasks.
Moreover, the nature of the transfer algorithm is such that even in
the case where the source tasks are unrelated to the target task, the
learning performance does not exhibit drastic drops, unlike the case
where value functions of source tasks are directly used to initialize
or modify the value function of a target task. Another advantage
of the approach proposed here is that it can be easily applied to
different representation schemes (tabular representations, neural
networks etc.,), as long as the same action space and representation
is used for the target and source tasks. In addition, with regards to
the storage of knowledge of learned tasks, we demonstrated that
the SOM-based approach offers a scalable alternative to explicitly
storing the value function weights of all the learned tasks.

Despite these advantages, several issues remain to be addressed.
The most fundamental limitation of this approach is that it is ap-
plicable only to situations where tasks differ solely in their reward
functions. This may prohibit its use in many practical applications.
Moreover, the approach as described executes any action advice
that it is provided with. The decision to execute the advised actions
could be carried out in a more selective manner, perhaps based on
the cosine similarity between the target task and the advising node
of the SOM. Apart from this, and the several other possible variants
to this approach, ways to automate the selection of the threshold
parameters, establishing theoretical bounds on the learning perfor-
mance and approaches to quantify the efficiency of the knowledge
storage mechanism may be future directions for research.

5 CONCLUSIONS
We described an approach to efficiently store and reuse the knowl-
edge of learned tasks using self organizing maps. We applied this
approach to an agent in a simulated multi-task navigation envi-
ronment, and compared its performance to that of an ϵ−greedy
approach for different values of the exploration parameter ϵ . Results
from the simulations reveal that a modified exploration strategy
that exploits the knowledge of previously learned tasks improves
the agent’s learning performance on related target tasks. Over-
all, our results indicate that the approach proposed here transfers
knowledge across tasks relatively safely, while simultaneously stor-
ing relevant task knowledge in a scalable manner. Such an approach
could prove to be useful for agents that operate using the reinforce-
ment learning framework, especially for real-world applications
such as autonomous robots, where scalable knowledge storage and
sample efficiency are critical factors.

ACKNOWLEDGEMENTS
This work is partially supported by a President’s Graduate Fellow-
ship (T.G.K., Ministry of Education, Singapore)

REFERENCES
[1] Damminda Alahakoon, Saman K Halgamuge, and Bala Srinivasan. 2000. Dynamic

self-organizing maps with controlled growth for knowledge discovery. IEEE
Transactions on neural networks 11, 3 (2000), 601–614.

[2] Haitham Bou Ammar, Eric Eaton, Matthew E Taylor, Decebal Constantin Mocanu,
Kurt Driessens, Gerhard Weiss, and Karl Tuyls. 2014. An automated measure
of mdp similarity for transfer in reinforcement learning. In Workshops at the
Twenty-Eighth AAAI Conference on Artificial Intelligence.

6

[3] James L Carroll and Kevin Seppi. 2005. Task similarity measures for transfer
in reinforcement learning task libraries. In Neural Networks, 2005. IJCNN’05.
Proceedings. 2005 IEEE International Joint Conference on, Vol. 2. IEEE, 803–808.

[4] Norm Ferns, Prakash Panangaden, and Doina Precup. 2004. Metrics for finite
Markov decision processes. In Proceedings of the 20th conference on Uncertainty
in artificial intelligence. AUAI Press, 162–169.

[5] Matthieu Geist, Bruno Scherrer, et al. 2014. Off-policy learning with eligibility
traces: a survey. Journal of Machine Learning Research 15, 1 (2014), 289–333.

[6] Thommen George Karimpanal and Erik Wilhelm. 2017. Identification and off-
policy learning of multiple objectives using adaptive clustering. Neurocomputing
263 (2017), 39 – 47. https://doi.org/10.1016/j.neucom.2017.04.074 Multiobjective
Reinforcement Learning: Theory and Applications.

[7] Teuvo Kohonen. 1998. The self-organizing map. Neurocomputing 21, 1 (1998),
1–6.

[8] Alessandro Lazaric. 2012. Transfer in Reinforcement Learning: A Framework
and a Survey. Springer Berlin Heidelberg, Berlin, Heidelberg, 143–173. https:
//doi.org/10.1007/978-3-642-27645-3_5

[9] Miao Liu, Girish Chowdhary, Jonathan P How, and L Carrin. 2012. Transfer learn-
ing for reinforcement learning with dependent Dirichlet process and Gaussian
process. NIPS, Lake Tahoe, NV, December (2012).

[10] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. 2015. Actor-
mimic: Deep multitask and transfer reinforcement learning. arXiv preprint
arXiv:1511.06342 (2015).

[11] Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming (1st ed.). John Wiley & Sons, Inc., New York, NY, USA.

[12] Mark Ring, Tom Schaul, and Juergen Schmidhuber. 2011. The two-dimensional
organization of behavior. In Development and Learning (ICDL), 2011 IEEE Interna-
tional Conference on, Vol. 2. IEEE, 1–8.

[13] Mark Bishop Ring. 1994. Continual learning in reinforcement environments. Ph.D.
Dissertation. University of Texas at Austin Austin, Texas 78712.

[14] Jinhua Song, Yang Gao, Hao Wang, and Bo An. 2016. Measuring the distance
between finite markov decision processes. In Proceedings of the 2016 International
Conference on Autonomous Agents &Multiagent Systems. International Foundation
for Autonomous Agents and Multiagent Systems, 468–476.

[15] Richard S Sutton and Andrew G Barto. 2011. Reinforcement learning: An intro-
duction. (2011).

[16] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M
Pilarski, Adam White, and Doina Precup. 2011. Horde: A scalable real-time archi-
tecture for learning knowledge from unsupervised sensorimotor interaction. In
The 10th International Conference on Autonomous Agents and Multiagent Systems-
Volume 2. International Foundation for Autonomous Agents and Multiagent
Systems, 761–768.

[17] Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement
learning domains: A survey. Journal of Machine Learning Research 10, Jul (2009),
1633–1685.

[18] Teck-Hou Teng, Ah-Hwee Tan, and Jacek M Zurada. 2015. Self-organizing neural
networks integrating domain knowledge and reinforcement learning. IEEE
transactions on neural networks and learning systems 26, 5 (2015), 889–902.

[19] Sebastian Thrun and Joseph O’Sullivan. 1998. Clustering learning tasks and
the selective cross-task transfer of knowledge. In Learning to learn. Springer,
235–257.

[20] Lisa Torrey and Matthew Taylor. 2013. Teaching on a budget: Agents advising
agents in reinforcement learning. In Proceedings of the 2013 international confer-
ence on Autonomous agents and multi-agent systems. International Foundation
for Autonomous Agents and Multiagent Systems, 1053–1060.

[21] Adam White, Joseph Modayil, and Richard S Sutton. 2012. Scaling life-long
off-policy learning. In Development and Learning and Epigenetic Robotics (ICDL),
2012 IEEE International Conference on. IEEE, 1–6.

[22] Yusen Zhan and Matthew E Taylor. 2015. Online transfer learning in reinforce-
ment learning domains. arXiv preprint arXiv:1507.00436 (2015).

[23] Matthieu Zimmer, Paolo Viappiani, and Paul Weng. 2014. Teacher-student frame-
work: a reinforcement learning approach. In AAMAS Workshop Autonomous
Robots and Multirobot Systems.

7

https://doi.org/10.1016/j.neucom.2017.04.074
https://doi.org/10.1007/978-3-642-27645-3_5
https://doi.org/10.1007/978-3-642-27645-3_5

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Knowledge Storage Using Self-Organizing Map
	3.2 The Transfer Mechanism

	4 Results
	5 Conclusions
	References

