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ABSTRACT
Inferring other agents’ mental states such as their knowledge, be-
liefs and intentions is thought to be essential for effective interac-
tions with other agents. Recently, multiagent systems trained via
deep reinforcement learning have been shown to succeed in solving
different tasks, but it remains unclear how each agent modeled or
represented other agents in their environment. In this work we
test whether deep reinforcement learning agents explicitly repre-
sent other agents’ intentions (their specific aims or goals) during
a task in which the agents had to coordinate the covering of dif-
ferent spots in a 2D environment. In particular, we tracked over
time the performance of a linear decoder trained to predict the
final goal of all agents from the hidden state of each agent’s neural
network controller. We observed that the hidden layers of agents
represented explicit information about other agents’ goals, i.e. the
target landmark they ended up covering. We also performed a series
of experiments, in which some agents were replaced by others with
fixed goals, to test the level of generalization of the trained agents.
We noticed that during the training phase the agents developed a
differential preference for each goal, which hindered generalization.
To alleviate the above problem, we propose simple changes to the
MADDPG training algorithm which leads to better generalization
against unseen agents.We believe that training protocols promoting
more active intention reading mechanisms, e.g. by preventing sim-
ple symmetry-breaking solutions, is a promising direction towards
achieving a more robust generalization in different cooperative and
competitive tasks.
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1 INTRODUCTION
The ability of humans to infer the mental states of others such as
their beliefs, desires, or intentions is called Theory of Mind (ToM)
[1, 2]. Inferring other agents’ intentions gives an advantage both
in cooperative tasks, where participants have to coordinate their
activities, and competitive tasks, where one might want to guess the
next move of the opponent. Predicting other agent’s unobservable
intentions from a few observable actions has practical applications
as for example in self-driving cars where during lane merge the

controlling agent has to determine whether the other driver is going
to let it in [4, 5].

In this work, we investigate to which degree artificial agents
trained with deep reinforcement learning develop the ability to infer
the intentions of other agents. Our experiments are based on a co-
operative navigation task from [9] where three agents have to cover
three landmarks and coordinate between themselves which covers
which (see Figure 1). We apply a linear readout neuron on each
agent’s hidden state and try to predict the final landmark covered
by other agents at the episode end. If early in the episode the other
agents’ final landmark can be accurately predicted, then we could
claim that the agents are representing information about others’
specific goals, and hence to some extent infer their intentions.

In our experiments we indeed show that the intentions of other
agents can be decoded from an agent’s hidden state using a linear
decoder, while the same information cannot be linearly decoded
from the observations (based on which the hidden state is com-
puted). This means that agents apply a learned transformation to
the observation which makes this information more explicit in hid-
den layer 1. Interestingly, the same information can be decoded less
accurately from hidden layer 2.

In our work we also show that training multiple agents jointly
using reinforcement learning leads to severe co-adaptation where
agents overfit to their training partners and do not generalize well
to novel agents. For example, we demonstrate that in a cooperative
navigation task the agents trained using multiagent deep deter-
ministic policy gradient (MADDPG) algorithm [9] develop favorite
landmarks and these are different for all three trained agents. The
lack of generalization is exposed when a MADDPG-trained agent is
put together with two “Sheldon” agents - agents that always go to
the same fixed landmark1. We show that performance of an agent
degrades substantially when the only remaining available landmark
is its least favorite one.

Finally we propose simple changes to the MADDPG algorithm
that make this problem less severe. In particular, randomizing the
order of agents for each episode improves the generalization result
while ensembling suggested in [9] does not.

The main contributions of the paper are:

• We show that deep reinforcement learning agents trained
in cooperative settings learn models which contain explicit
information about the intentions of other agents.

1Named after a character in “The Big Bang Theory” who insisted on always sitting in
the same spot.



Figure 1: Cooperative navigation task. Circles are agents,
crosses are landmarks. The rewarding scheme incentivizes
the coverage of each landmark by a different agent without
collisions. Image from [9].

• We show that jointly trained reinforcement learning agents
co-adapt to each other and do not generalize well when
deployed with agents that use unseen policies.

• We propose simple changes to the MADDPG algorithm that
alleviate the above problem to some degree.

The code is available at https://github.com/NeuroCSUT/intentions.

2 METHODS
Our experiments are based on a cooperative navigation task de-
scribed in [9]. In this task three agents try to cover three landmarks
and have to coordinate which agent covers which landmark (see
Figure 1). The reward at every time step is

r =
∑
i
minj (di j ) − c

where di j is the distance from landmark i to agent j and c is the
number of collisions. These rewards incentivize that there is exactly
one agent close to each landmark and there are as few collisions as
possible. The observation of each agent consists of 14 real values:
velocity of the agent (2), position of the agent (2), egocentric coor-
dinates of all landmarks (6) and egocentric coordinates of all other
agents (4). Action of an agent consists of 5 real values: acceleration
in four possible directions (only positive values) and a dummy value
for no action.

We follow the basic training scheme from [9] and we use the
MADDPG algorithm with default settings. The network has two
hidden layers with 128 nodes each. We train the agents for 100,000
episodes, when approximately the convergence happens. Thereafter
we evaluate the agents for 4,000 episodes and record the observa-
tions, hidden states (from both layers) and actions of each agent.

To decode other agents’ goals we train a linear readout neuron
to predict the final landmark (the landmark covered at the final
timestep of the episode) of other agents from each agent’s hidden
state. This is treated as a classification task with three landmarks
as the three classes (the readout model has three outputs). For

comparison we also try to predict the final landmark from the
observation (network’s input) and the actions (network’s output).
We separate the 4,000 episodes randomly into training and test set
(test set size was 25%) and report classification accuracy on the test
set. The training is done separately for each of the 25 time steps (all
episodes are of the same length). Use of a linear model guarantees
that the information is present explicitly in the model’s input.

To test the generalization ability of the agents we put them
together with two “Sheldon” agents - agents that go straight to a
fixed landmark ("their spot"). This leaves one landmark free for
the trained agent to cover. We run an evaluation for 9 possible
combinations of 3 agents and 3 free landmarks. One evaluation lasts
4000 episodes and we report the percentage of episodes where all
landmarks were covered. We compare this with the same measure
from previous evaluations where all agents were trained agents.
All results are averaged over 5 random seeds.

Finally we tried three possible modifications to MADDPG algo-
rithm to alleviate the generalization issues:

• MADDPG + shuffle: randomize the order of agents for
each episode. The order determines the position of other
agents’ data in agent’s observation. Randomizing makes it
impossible to have fixed assumptions about other agents’
behavior.

• MADDPG + shared: use a shared model for all agents, mak-
ing them basically equivalent and eliminating the option for
landmark biases.

• MADDPG + ensemble: use an ensemble of agents for each
position as suggested in [9]. The agents in an ensemble de-
velop different policies because of different random initializa-
tion and different training samples they see from replay. This
increases the diversity of partners any agent experiences,
which forces it to develop more general strategies.

3 RESULTS
3.1 Reading out intentions
We observed that the agents trained with vanilla MADDPG had
preferences for certain landmarks (see also section 3.2) and hence in
many cases the readout neuron could achieve a high classification
performance by just producing a constant prediction (see Figure 4
in appendix A). To remove such class imbalance, we used MADDPG
+ shuffle scheme for assessing the decoding performance. Figure 2
shows the readout neuron prediction results.Wemake the following
observations:

• The agent predicts its own final landmark generally better
than others’, which is expected, because it has direct access
to the hidden state that guides the actions.

• The final landmark of other agents can be predicted nu-
merically better from hidden layer 1 activations than from
observations or from hidden layer 2 activations. While all
relevant information is already contained within the observa-
tion (because hidden states are computed from observations)
it is more explicitly represented in the hidden layers and can
be successfully decoded with a simple linear model. Repre-
sentations in hidden layer 2 presumably focus more on the
policy (the actions to be chosen) and therefore lose some of
the information about intention.
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Figure 2: Test set accuracy of a linear read-out neuron forMADDPG + shuffle scheme. All 9 combinations of 3 agents predicting
the final landmarks of other 3 agents are shown, including the agent predicting its own final target. Y-axis is the test set
accuracy of a linear read-out neuron, X-axis is timestep of an episode.

• Output of the network (the actions) is completely uninforma-
tive for predicting the final landmark of other agents, which
is expected. Prediction accuracy from actions coincides with
the accuracy from random noise (not shown for brevity) and
is close to the chance level (33%).

• The accuracy of landmark prediction from hidden layer 1
is 50-70%. While not perfectly accurate, it is clearly above
chance level. Interestingly, the final landmarks of other agents
can be predicted above chance level already in the first
timestep. There is also an increase of prediction accuracy as
the episode progresses, which is expected.

Video showcasing the intention readouts is available here:
https://youtu.be/3-pMUPPo970.

3.2 Generalization gap
As noted before, agents trained with vanilla MADDPG algorithm
developed preferences for certain landmarks (see Table 1). In addi-
tion to making reading out intentions uninformative due to class
imbalance problem, it was also clear that the trained agents had
co-adapted to each other and as such would not generalize when
put together with agents unseen during training.
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Table 1: Percentage of episodes where a given agent covered
a given landmark with vanilla MADDPG algorithm. Only
those episodes are counted where all three landmarks were
covered by exactly one agent (48% of all episodes).

landmark 1 landmark 2 landmark 3
agent 1 74% 25% 1%
agent 2 25% 75% 0%
agent 3 1% 0% 99%

To quantify the lack of generalization we put a trained agent
together with two “Sheldon” agents, each of which always goes to a
fixed landmark. This test measures the ability of the agent to adapt
its policy to an unforeseen situation where only one landmark is
free for it to achieve the goal. Indeed the agents showed an inability
to adapt to the situation when the free landmark was their least
favorite, see Table 2 for an example and compare with Table 1.

Table 2: Percentage of episodes where agents were able to
cover all landmarks, when two “Sheldon” agents covered
two landmarks and given agent had only one free landmark
to cover. When paired with two trained agents the reference
number to compare with is 48%.

landmark 1 landmark 2 landmark 3
agent 1 65% 42% 3%
agent 2 28% 75% 2%
agent 3 5% 2% 78%

While Table 1 and Table 2 showcase a single training run for
clarity, similar pattern occurred in all runs.

3.3 Improving generalization
To improve the generalization of MADDPG algorithm we tried out
three different modifications, as described in section 2. To test the
generalization ability we report the percentage of episodes where
the agents covered all three landmarks. This number is averaged
over 5 training runs and over 9 agent-landmark combinations as
seen in Table 2. Figure 3 shows the results.

We make the following observations:
• Vanilla MADDPG agents achieve very good results when
evaluated against other trained agents, but fail when con-
fronted with agents with unseen policies. Large standard
deviation on orange bar results from the fact that for favorite
landmarks the success rate is very high and for the least fa-
vorite landmarks the success rate is very low (see Table 2 for
an example).

• MADDPG + shared scheme was much worse than Vanilla
MADDPG when evaluated against other trained agents, but
surprisingly achieved better generalization.

• MADDPG + shuffle scheme achieves consistent success
rate both with trained agents and “Sheldon” agents.

• MADDPG + ensemble scheme improves the result with
trained agents but does not fix the generalization gap.

Video showcasing the generalization improvements is available
here: https://youtu.be/r5jMpdC_pSk.

Figure 3: The percentage of episodes where all three land-
markswere covered for different training schemes. The blue
bars represent the means and standard deviations over 5
runs across all trained agents. The orange bars represent the
means and standard deviations across 5 × 9 runs with two
“Sheldon” agents and one trained agent.

4 DISCUSSION
Inferring the intentions of others is the basis for effective coopera-
tion [12]. We studied a very simplified version of cooperation where
three agents needed to cover three landmarks. We observed that
the agents learn to model the intentions of other agents: already
in the beginning of the episode the activity of the hidden layers
of a particular agent carried information about the other agents’
targets. While one could make the argument that our result is a
far cry of reading the intentions of others, we would contend that
this aspect of intention modeling is a necessary building block of
reading more complex intentions. Furthermore, studying human
level intentions (and ToM) has proven to be complicated [1, 3, 7, 11];
studying simple tasks with agents whose representations can be
opened will provide unique insights into the emergence of more
complex aspects of ToM [2]. In particular, being able to manipulate
the network architecture and the components of the system allows
one to answer which aspects really matter for solving a particu-
lar task. For example, inferring and generalizing intentions seems
to require explicit memory (i.e. knowledge about the behavioral
patterns of specific other agents), but our current work shows that
rudimentary intention reading can be done even without a specific
memory store. It might be possible that for more complex scenarios
recurrent neural networks or networks with external memory are
needed.

4.1 Generalization in multiagent setups
The lack of generalization in reinforcement learning has been criti-
cized before [10]. Especially problematic is the fact that we tend to
test our agents in the same environment where they were trained in.
Multiagent training adds another dimension to the generalization
problem - the agents should also perform well against opponents
and with partners unseen during training.

In the present workwe observed that when trainedwith the same
partners, agents overfit to the behavior of their partners and cannot
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cooperate with a novel agent. While the issue of co-adaptation
during training was also raised in [9], they mainly pointed it out in
the context of competitive tasks. We show that it is just as much
of a problem in cooperative tasks. Furthermore, we demonstrated
that the ensembling approach suggested in [9] does not fix it. More
thorough analysis of the overfitting problem is presented in [8].

In principle the solution is simple - the agents need to experience
a variety of partners during training to generalize well. Similar to
data augmentation used in supervised training we would need to
“augment” our policies in variousways to produce thewidest variety
of training partners. Unfortunately it is not clear how to achieve this
in an automated and generalizable way. One proposed approach
is to learn maximum entropy policies as done in [6]. However, it
is not clear if that process would ever produce “Sheldon” policies
used in our experiments, or if they are actually needed.

Our MADDPG + shuffle scheme randomizes the order of agents
at the beginning of every episode. When the policy is stateless (as
it is in our case) this could also be done at every time step. One
might be concerned that this deviates from the on-policy learning
regime. Our reasoning is that sampling between three policies could
be considered as a (stochastic) super-policy that consists of three
sub-policies. For the super-policy the learning would still be on-
policy. Nevertheless, in our experiments we only used episode level
shuffling because it also generalizes to policies with memory (i.e.
recurrent neural networks) and is conceptually easier. In practice
we did not observe much difference.

5 CONCLUSIONS
When the controlling agent of a self-driving car performs a lane
change, it needs to cope with any kind of behavior from other
drivers, however hostile or incompetent they are. Inferring the
intentions of other agents is therefore crucial to behave in a reliable
manner. For example, the controlling agent of a self-driving car
cannot expect all other cars to run the same build of the same
software, or even, any software at all. So they need to generalize to
unforeseen situations and behaviors of other drivers.

In this work we showed that deep reinforcement learning agents
indeed learn to model intentions of other agents when trying to
solve a cooperative task. In cooperative navigation task the final
target of another agent could be predicted better from the hidden
layer activations than from the observation. Because the hidden
layer is computed from observation, the transformation applied by
agent must make this information more explicit, so that it can be
read out better with a linear neuron. This also confirms that linear
read-out neurons are a good technique for examining the learned
network.

Trying to read out the intentions of agents exposed the lack
of generalization in learned models. Trained agents co-adapted
to specific behaviors of each other and failed consistently when
put together with unseen agents. We showed that simple shuffling
of all agents at each episode improves the generalization while
ensembling does not. While this alleviates the generalization gap
somewhat, a more robust solution would be to train the agents
against opponents using a diverse range of policies. More generally,
training paradigms promoting an active inference of other agents’

intentions and specific goals is a promising road to narrow the
generalization gap.
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A SUPPLEMENTARY FIGURES

Figure 4: Test set accuracy of linear read-out neuron for vanilla MADDPG algorithm. The predictions are unusually good
because of biases of learned agents - the read-out model can score well by just producing constant prediction. For example
agent 3 can be predicted perfectly because in 99% of the cases it goes to landmark 3 (see Table 1). Still the comments from
section 3.1 hold.
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