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ABSTRACT
In this paper, we investigate the problem of anti-coordination under

rationality constraints. This includes role allocation, task assign-

ment, resource allocation, etc. Inspired by human behavior, we

propose a framework (CA
3
NONY ) that enables fast convergence to

efficient and fair allocations based on a simple convention of cour-

tesy. We prove that following such convention induces a strategy

which constitutes an approximate subgame-perfect equilibrium of

the repeated allocation game with discounting. Simulation results

highlight the effectiveness of CA
3
NONY as compared to state-of-

the-art bandit algorithms, since it achieves more than two orders

of magnitude faster convergence, higher efficiency, fairness, and

average payoff.
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1 INTRODUCTION
In multi-agent systems, agents are often called upon to implement a

joint plan in order to maximize their rewards. Typically, a joint plan

consists of two distinct elements: coordination, where agents are

required to take the same action [27] [13], and anti-coordination,

where the goal is to take distinct actions [14] [12] [15] [7]. This

paper studies anti-coordination in repeated allocation games. This

includes role allocation (e.g. teammates during a game), task assign-

ment (e.g. employees of a factory), resource allocation (e.g. wireless

bandwidth (channels) for IoT devices, parking spaces and/or charg-

ing stations for autonomous vehicles) etc. In many real world appli-

cations of the aforementioned scenarios the agents are indifferent

to which role/task/resource they attain, as long as they receive one

(e.g. wireless frequencies). Thus, this paper focuses on achieving a

game-theoretically stable anti-coordination between ‘indifferent’

agents, leaving individual preferences for future work. Beyond the

scope of repeated allocation games, the proposed framework can

also be applied as a negotiation protocol in one-shot interactions.

E.g. self-driving vehicles attempting to get a parking space can

utilize such protocol in a simulated environment with message

exchange.

A central coordinator who possesses complete information can

recommend an action to each agent. Yet, an omniscient central

coordinator is not always available, and in real-world applications

with partial observability agents might not be willing to trust such

recommendations. Moreover, inter-agent interactions might need

to take place in an ad-hoc fashion, with previously un-encountered

collaborators [29]. Planning in such environments becomes even

more challenging. Part of this difficulty stems from the lack of

responsiveness and/or communication between the participants.

Typical ad-hoc approaches (e.g. Monte Carlo algorithms, Bayesian

learning, bandit algorithms etc.) tend to require too many rounds

to converge to be feasible in dynamic environments and real-life

applications. Yet, humans are able to routinely coordinate in such

an ad-hoc fashion.

One key concept that facilitates human ad-hoc coordination is

the use of conventions [18]. Behavioral conventions are a fundamen-

tal part of human societies, yet they have not appearedmeaningfully

in empirical modeling of multi-agent systems. Inspired by human

behavior, we propose the adoption of a simple convention based on

courtesy. Courtesy is a moral virtue, an obligation that arises by the

social nature of humans. Society demands that an individual should

conduct himself in consideration of others. This allows for fast con-

vergence, albeit it is not game theoretically sound; people adhere

to it due to social pressure. Such problems become even more se-

vere in situations with scarcity of resources. Under such conditions,

courtesy breaks down and in the name of self-preservation people

exhibit urgency and competitive behavior [16]. Thus, to satisfy our

rationality constraint (i.e. self-interested agents do not have an

incentive to deviate) in an artificial system, we need a deterrent

mechanism.

In this paper we present a framework that reproduces courtesy,

using monitoring and punishments as a deterrent mechanism. Our

focus is on repeated allocation games with discounting. The pro-

posed framework, CA
3
NONY (Contextual Anti-coordination in

Ad-hoc Anonymous games), achieves fast convergence, and high

efficiency and fairness while being game theoretically sound. The

agents follow a simple convention of courtesy, based on the decen-

tralized allocation algorithm of [12]. Coupled to that, we introduce

a monitoring scheme on the resource side to ensure equality among

the participants and make adhering to the convention a rational

choice. The main contributions of this paper are:

• Introduction of an anti-coordination framework (CA
3
NONY

) which consists of a courteous convention and a monitoring
scheme.
• Proof that under such a framework, the use of the courteous

convention induces strategies that constitute an approximate

subgame-perfect equilibrium.

• Comparison to state-of-the-art bandit algorithms.

The rest of the paper is organized as follows. Section 2 situates

CA
3
NONY in the literature, Section 3 presents the proposed frame-

work, and Section 4 provides simulation results. Finally, Section 5

concludes the paper.

2 RELATEDWORK
In ad-hocmulti-agent coordination the goal is to design autonomous

agents that achieve high flexibility and efficiency in a setting that

admits no prior coordination between the participants [29]. Typical

scenarios include the use of Monte Carlo algorithms [4], Bayesian

learning [1], or bandit algorithms [9], [5]. Traditionally, pure ad-hoc

approaches suffer from slow learning (e.g. [9]), which makes pure



ad-hoc coordination a very ambitious goal for real-life applications.

In this paper we propose a middle-ground approach. Inspired by

human ad-hoc coordination, we incorporate prior knowledge in the

form of simple conventions. The coordination can still be considered

ad-hoc as it is not pre-programmed, rather it involves learning.

This allows for faster convergence to efficient and fair allocations

compared to pure ad-hoc approaches.

A convention is defined as a customary, expected and self-enforcing

behavioral pattern [32] [18]. In multi-agent systems, there are two

scopes throughwhich we study conventions. First, a convention can

be considered as a behavioral rule, designed and agreed upon ahead

of time or decided by a central authority [28] [31]. Second, a con-

vention may emerge from within the system itself through repeated

interactions between the participants [22] [31]. The proposed cour-

teous convention falls on the first category. It is incorporated as

prior knowledge to the agents, and, as proven in Section 3.5, it is

self-enforcing since the induced by the convention strategies con-

stitute an approximate subgame-perfect equilibrium of the repeated

allocation game.

An alternative way to model the anti-coordination problem is

as a multi-armed bandit problem [2], since the agents only receive

partial (bandit) feedback. In multi-armed bandit problems an agent

is given a number of arms (resources) and at each time-step has

to decide which arm to pull to get the maximum expected reward.

Bandit (or no-regret) algorithms typically minimize the total re-

gret of each agent, which is the difference between the expected

received payoff and the payoff of the best strategy in hindsight. As

such, they satisfy our rationality constraint since they constitute an

approximate correlated or coarse correlated equilibrium [24] [26].

Bandit algorithms have been successfully applied in many scenarios

in recent years, like in 5Gwireless networks [20] or (IoT)-driven cell

networks [21]. Nevertheless, the studied problem presents many

challenges: there is no stationary distribution (adversarial rewards),

all agents are able to learn (similar to recursive modeling), and

yielding gives a reward of 0 (desirable option for minimizing regret,

but not in respect to fairness). Due to their ability to learn from

partial feedback, bandit algorithms would be the natural choice for

a pure ad-hoc approach.

Game theoretic equilibria are desirable (since they satisfy the

rationality constraint), but hard to obtain. Deciding whether an

anti-coordination (anonymous) game has a pure Nash equilibrium

(NE) is NP-complete [8]. Furthermore, allocation games often ad-

mit undesirable equilibria: pure NE which are efficient but not

fair, or mixed-strategy NE which are fair but not efficient [12].

Hence, iterative best-response algorithms are not satisfactory. On

the other hand, an optimal correlated equilibrium (CE) of an anony-

mous game may be found in polynomial time [25]. However, in a

multi-agent scenario, we are mostly interested in repeated interac-

tions; agents who are able to learn and end up converging to an

equilibrium. Moreover, we are interested in information-restrictive

learning rules (i.e. completely uncoupled [30]), where each agent

is only aware of his own history of action/reward pairs. Such an

approach was applied in [12] to design a distributed algorithm for

reaching efficient and fair CE in wireless channel allocation games.

Yet, while the algorithm reaches an equilibrium in polynomial num-

ber of steps, cooperation to achieve this state is not rational. A

self-interested agent could keep accessing a resource forever, un-

til everyone else backs off. In this paper, we build upon the ideas

of Cigler and Faltings and develop an anti-coordination strategy

that constitutes an approximate subgame-perfect equilibrium, i.e.

cooperation with the algorithm is a best-response strategy at each

sub-game of the original stage game, given any history.

Finally, a generalization of anti-coordination games, called dis-

persion games, was described in [15]. In a dispersion game, agents

are able to choose from several actions, favoring the one that was

chosen by the smallest number of agents (analogous to minority

games [10]). The authors in [15] define a maximal dispersion out-

come as an outcome where no agent can switch to an action chosen

by fewer agents. The agents themselves do not have any particular

preference for the attained equilibrium. Contrary to that, we are

interested in achieving an efficient and fair outcome. Expanding

the studied techniques to tackle dispersion games, and therefore

non-binary utilities, remains open for future research.

3 THE CA3NONY FRAMEWORK
In this section, we present CA

3
NONY , an anti-coordination frame-

work for repeated allocation games with discounting (δ ). The frame-

work is applicable to any role, task, resource, etc. allocation scenario.

For simplicity hereafter we will refer only to resources.

3.1 The Repeated Allocation Game
Let a ‘resource’ be any element that can be successfully assigned to

only one agent at a time. At each time-step,N = {1, . . . ,N } agents
try to access R = {1, . . . ,R} identical and indivisible resources,

where possibly N ≫ R. The set of available actions is denoted

as A = {Y ,A1, . . . ,AR }, where Y refers to yielding and Ar refers
to accessing resource r . We assume that access to a resource is

slotted and of equal duration. A successful access yields a positive

payoff, while no access has a payoff of 0. If more than one agent

access a resource simultaneously, a collision occurs and the colliding

parties incur a cost ζ < 0. Thus, the agents only receive a binary

feedback of success or failure. Let an denote agent n’s action, and
a−n = ×∀n′∈N\{n }an′ the joint action for the rest of the agents.

The payoff function is defined as:

un (an ,a−n ) =


0, if an = Y

1, if an , Y ∧ ai , an ,∀i , n
ζ , otherwise

(1)

Conforming to real-world scenarios, we assume that each agent

n is only aware of his own history of action/reward pairs, Hτ
n =

{(α tn ,un (α
t
n ,α

t
−n ))∀t ≤τ }.

Finally, we assume that the agents can observe side information

from their environment at each time-step t . We call this side infor-

mation context (e.g. time, date etc.). The agents utilize this context

as a common signal in their decision-making process, a means to

learn and anti-coordinate their actions. Let K = {1, . . . ,K} denote
the context space. We do not assume any a priori relation between

the context space and the problem. The only constraints are that

the values should repeat periodically, and satisfy K = ⌈N /R⌉.
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Algorithm 1 Pseudo-code of the CA
3
NONY framework.

Require: ∀n ∈ N initialize дn u.a.r. in R.

Require: ∀n ∈ N allocate cn ←m of artificial cash (AC).

Require: Set fee fr ←m,∀r ∈ R
1: for kt ∈ K do
2: Agents observe context kt .
3: if дn (kt ) = Ar then
4: Agent n accesses resource r and
5: pays access fee of fr AC.
6: if Collision(r ) then
7: Set дn (kt ) ← Y with prob. pbackof f > 0.

8: Agent n gets reimbursed fr AC.
9: else
10: Agent n gets reimbursed (1 − ξ )fr AC.
11: end if
12: else if дn (kt ) = Y then
13: Agent n monitors random resource r ∈ R.
14: if Free(r ) then
15: Set дn (kt ) ← Ar with probability 1.

16: end if
17: end if
18: end for
19: Set fee f ′r ← (1 − ξ )fr ,∀r ∈ R

3.2 Adopted Convention
The adopted convention is based on the cooperative allocation

algorithm of [12]. Each agent n has a strategy дn : K → A that

determines a resource to access at time-step t after having observed
context kt . The strategy is initialized uniformly at random in R.

If дn (kt ) = Ar , then agent n accesses resource r . Otherwise, if
дn (kt ) = Y , the agent does not access a resource but instead chooses
uniformly at random a resource r to monitor for activity. If it is

free, then the agent updates дn (kt ) ← Ar .
In [12], agents back-off probabilistically in case of a collision

(set дn (kt ) ← Y with probability pnbackof f ). In such a setting, it is

possible to reach a symmetric subgame-perfect equilibrium. But

in order to actually play it, the agents need to be able to calculate

it. It is not always possible to obtain the closed form of the back-

off probability distribution of each resource. Furthermore, a self-

interested agent could stubbornly keep accessing a resource forever,

until everyone else backs off (also known as ‘bully’ strategy [19]).

Instead, we adopted a simple convention where agents are being

courteous, i.e. if there is a collision, the colliding agents will back-off
with some constant positive probability:pnbackof f = p > 0,∀n ∈ N .

Being courteous though, does not satisfy the rationality constraint.

However, a uniform distribution of resources is socially optimal (i.e.

fair allocations maximize the social welfare). Hence, if we introduce

quotas to the use of resources and punishments upon violating

them, courtesy induces rational strategies. In the following sections

we introduce a monitoring scheme and prove that the resulting

strategy constitutes an approximate subgame-perfect equilibrium.

3.3 Rationality
In order to ensure the proposed convention’s rationality, the agents

must be assured that they will eventually be successful, i.e. we must

provide safeguards against the monopolization of resources. In

this section we present a decentralized, self-regulated monitoring

scheme based on artificial currency (which is used solely as an

internal mechanism). The monitoring scheme deters agents from

monopolizing resources to the point that each agent can access a

resource only for one context value out of K . In order to be able to

enforce such a scheme we need to employ monitoring Authorities
(MA) at each resource. Initially all the agents that ‘buy-in’ are issued

the same amountm ∈ R of artificial cash (AC). This amount also

corresponds to the initial fee for every resource fr . To allow access

to resource r , the MA responsible for that resource charges fr units
of AC, and monitors the event. If there was a successful access,

the MA reimburses the amount of (1 − ξ )fr AC to the accessing

agent, where ξ → 0 ∈ R is a commission fee. Otherwise, the MA

reimburses the full amount of fr AC to the participating agents,

so that they are able to try again for a different context value. The

charging and reimbursement can be performed anonymously using

the underlying architecture of any decentralized digital currency

scheme (e.g. [23] [11]). Finally, after each period of context values,

the MAs lower the fee to f ′r ← (1 − ξ )fr ,∀r ∈ R. The pseudo-code
of CA

3
NONY is provided in Algorithm 1.

A valid monitoring scheme for our framework must prohibit

the monopolization of resources. To see why this is the case for

the proposed decentralized version, we can consider the following.

After every successful access, the amount of AC that an agent

possesses drops below the access fee of a resource. Hence, a rational

agent will only access one resource for one context value. Waiting

for the fee to drop to the point that fr = m/2 is not a rational

behavior since, assuming ξ → 0, the number of iterations required

to allow accessing two resources at the same time will reach ∞.

At that point the rest of the agents will have reached a correlated

equilibrium and the adversarial agent will not have an incentive to

access an additional resource, besides the one that corresponds to

him, since it would result in a collision. If, due to implementation

constraints, we can not select a small ξ , the MAs can change the

artificial currency every I periods, invalidating the old one and

again making such strategy irrational.

3.3.1 Punishments. Along with the monitoring scheme, it is nec-

essary to put punishments into effect for situations where agents are

able to access resources without paying. E.g. in a wireless scenario,

if an agent transmits to some other than the designated channel,

then his packets will no longer be relayed. In other words, pun-

ishments are application specific, and only needed in applications

where the resources are publicly available.

3.4 Rate of convergence
Theorem 3.1. In a repeated allocation game with N agents and R

resources the expected number of steps before Algorithm 1 converges
to a correlated equilibrium is given by Equation 2.

O

(
N

(
log

(⌈
N

R

⌉)
+ 1

)
(log(N ) + R)

)
(2)

Proof. The employed monitoring authorities do not affect the

computational complexity of Algorithm 1, since their time com-

plexity cost is O(1), i.e. independent of the input parameters (N , R).
The adopted learning rule is based on the cooperative allocation

3



algorithm of [12]. Theorems 12 and 13 of [12] prove that for N
agents, R ≥ 1, K ≥ 1, and back-off probability 0 < p < 1, the

expected number of steps before the learning algorithm converges

to a correlated equilibrium is:

O

(
(K log(K) + 2K)R

1

1 − p

(
1

p
log(N ) + R

)
+ 1

)
(3)

.

For a constant back-off probability and K = ⌈N /R⌉, Equation 3

gives the required bound. �

3.5 Courtesy Pays Off
In this section we prove that if the agents back-off with a constant

positive probability pbackof f > 0, then Algorithm 1 induces a

strategy that is almost rational; no agent can improve his payoff by

more than ϵ > 0 (ϵ-equilibrium).

LetU τ
n (σ ,δ ) =

∑τ
t=0 δ

tun (a
t
n ,a

t
−n ) denote the cumulative payoff

of agent n that follows strategy σ up to time-step τ in a repeated

allocation game with discounting (where δ ∈ (0, 1) is the discount
factor). We prove the following theorem.

Theorem 3.2. Suppose that in a repeated allocation game with
discounting (δ ) the agents who collide back-off with a constant prob-
ability pbackof f > 0. Let σp denote the aforementioned strategy
(courteous strategy). Let E(U∞n (σp ,δ )) be the expected cumulative
payoff for each agent in this case and E(U∞n (σ∗,δ )) be the expected
payoff of the best-response strategy σ∗. Then ∀ϵ > 0, ∃δ0, 0 < δ0 < 1

such that ∀δ ,δ0 ≤ δ < 1:

E(U∞n (σp ,δ )) > (1 − ϵ)E
∗(U∞n (σ∗,δ ))

Proof. Suppose that an agent could access a resource at every

time-step. His payoff would be 1 + δ + δ2 + δ3 + · · · = 1

1−δ for

|δ | < 1. But, the introduced monitoring scheme prohibits from

monopolizing resources, i.e. each agent can only access a resource

for his corresponding context value. As a result, the best-response

strategy’s payoff for some δ is bounded by:

E(U∞n (σ∗,δ )) ≤
1

K

1

1 − δ
(4)

When agents adopt the courteous convention, in each round

until they converge to a correlated equilibrium, they receive a

payoff between ζ < 0 (collision cost) and 1. After convergence,

their expected payoff is:

δτ + δτ+K + δτ+2K + · · · =
∞∑
i=0

δτ+iK =
δτ

1 − δK

where τ is the number of steps it took them to converge. Hence the

convention induced strategy’s payoff is at least:

E(U∞n (σp ,δ )) ≥
∞∑
τ=0

Pr [conv. in τ steps] ·

(
ζ
1 − δτ

1 − δ
+

δτ

1 − δK

)
We can define a random variable X such that X = τ if the

algorithm converges after exactly τ steps. Since δx is a convex

function we have that E(δx ) ≥ δE(x ), therefore:

E(U∞n (σp ,δ )) ≥ ζ
1 − δE(X )

1 − δ
+

δE(X )

1 − δK
(5)

By dividing Equation 5 by Equation 4 we get:

E(U∞n (σp ,δ ))

E(U∞n (σ∗,δ ))
≥

ζ (1 − δE(X ))(1 − δ )−1 + δE(X )(1 − δK )−1

K−1(1 − δ )−1
(6)

E(X ) does not depend on δ . Moreover, δE(X ) is continuous in δ ,

monotonous, and lim

δ→1
−
δE(X ) = 1. Thus, we can take the limit of

Equation 6 as δ → 1
−
, which equals:

lim

δ→1
−

E(U∞n (σp ,δ ))

E(U∞n (σ∗,δ ))
= 1

�

In order to guarantee rationality, the discount factor δ must be

close to 1 since, as δ gets closer to 1, the agents do not care whether

they access now or in some future round. Since the proposed moni-

toring scheme guarantees that every agent will access a resource

for his corresponding context value, when δ → 1, the expected

payoff for agents who are accessing a resource and for those who

have not accessed a resource yet will be the same. In other words,

the cost (overhead) of learning the correlated equilibrium decreases.

Assuming that the agents are indifferent in claiming a resource in

a period ofTind rounds (δt = 1,∀t ≤ Tind ), we can use the Markov

bound to prove that with high probability the proposed algorithm

will converge in underTind rounds, hence satisfying the rationality

constraint. We assume the agents are willing to accept quasilinear

‘delay’ with regard to the number of resources R, the number of

agents N , and the size of the context space K , specifically:

Tind = O (R log(R)N log(N )K log(K)) (7)

Using the Markov bound, it follows that the probability that the

proposed algorithm takes more than the accepted number of steps

Tind to converge is:

Pr [¬conv. after Tind ] = O

(
R + log(N )

N log(N ) log(R)

)
(8)

Even though when used directly the Markov’s inequality gener-

ally does not give very good bounds, Equation 8 proves that our

algorithm converges in the required time with high probability.

We can further strengthen our rationality hypothesis by using a

tighter bound (e.g. Chebyshev’s inequality), albeit computing the

theoretical variance of the convergence time is an arduous task,

thus it remains open for future work.

4 EXPERIMENTAL EVALUATION
In this section we model the resource allocation problem as a multi-

armed bandit problem and provide simulation results of CA
3
NONY

’s performance in comparison to state-of-the-art, well established

bandit algorithms, namely the EXP4 [3], EXP4.P [6], and EXP3

[3]. In every case we report the average value over 128 runs of

the same simulation. The back-off (being courteous) probability

of CA
3
NONY is set to pbackof f = 0.5, which is the optimal value

according to Equation 3. For the EXP family of algorithms, the input

parameters are set to their optimal values, as prescribed in [3], and

[6]. Finally, we assume a reward of 1 for a successful access, −1 if

there is a collision, and 0 if the agent yielded at that time-step.

4



Figure 1: Utilization: R = 4,N = 16,K = 4 (x-axis in log scale).

4.1 Employed Bandit Algorithms
In our setting, the reward of each arm (resource) does not follow

a fixed probability distribution (adversarial setting). Furthermore,

the agents are able to observe side-information (context) at each

time-step t , before making their decision. The arm that yields the

highest expected reward can be different depending on the context.

Hence we will focus on adversarial contextual bandit algorithms

(see [33] for a survey on contextual bandits).

A typical method for solving adversarial contextual bandit prob-

lems is to model them as bandit problems with expert advice. In this

method we assume a set of expertsM = {1, . . . ,M} who, at each
time-step t , generate a probability distribution on which arm to pull

depending on the context. A no-regret algorithm in this case per-

forms asymptotically as well as the best expert. Such an algorithm is

the EXP4, which achieves a regret bound of O(
√
TR logM), whereT

is the time horizon. Yet, the EXP4 exhibits high variance [33], hence

the regret bound holds only in expectation. Beygelzimer et al. pre-

sented EXP4.P which achieves the same regret, O(
√
TR log(M/λ)),

with high probability (1−λ,∀λ) by combining the confidence bounds

of UCB1 [2] and EXP4.

The computational complexity and memory requirements of the

above algorithms are linear inM , making them intractable for large

number of experts. In order to deal with the increased complexity

in larger simulations and to ensure fairness in the presented results,

we have included two restricted versions of the EXP4 algorithms,

denoted as ‘EXP4
R
’ and ‘EXP4.P

R
’. In these versions, the setM is

limited to uniform correlated equilibria, the same set of equilibria

that CA
3
NONY converges to. This is equivalent to enabling the use

of the monitoring scheme by the EXP4 algorithms, i.e. ‘EXP4
R
’ and

‘EXP4.P
R
’ utilize the employed monitoring authorities.

An alternative approach is to use a non-contextual adversarial

bandit algorithm, such as the EXP3, whose weak regret is bounded

by O(
√
TR logR). Moreover, we can convert EXP3 to a contextual

algorithm by setting up a separate instance of the EXP3 ∀k ∈ K .
We call this version ‘CEXP3’. This results in a contextual bandit

algorithm which has the edge over EXP4 from an implementation

viewpoint since its running time at each time-step is O(R) and its

memory requirement is O(KR) (CA3
NONY ’s running time at each

time-step is O(1) and its memory requirement O(K)).

4.2 Simulation Results
4.2.1 Convergence Speed & Efficiency. We know that CA

3
NONY

converges to a correlated equilibrium which is efficient. If all agents

Table 1: Fairness (Jain Index), K = R,N = R × K .

R = 2 R = 4 R = 8 R = 16

CA
3
NONY 1.0000 1.0000 1.0000 1.0000

EXP3 0.5000 0.2500 0.1250 0.0625

CEXP3 0.6875 0.5905 0.5317 0.9621

EXP4(.P)
R

1.0000 0.9999 0.9880 0.9789

EXP4(.P) 0.7157 0.6206 N/A N/A

Table 2: Average Payoff, K = R,N = R × K .

R = 2 R = 4 R = 8 R = 16

CA
3
NONY 45.2 15.0 -6.5 -25.4

(C)EXP3 -60.7 -94.2 -99.9 -100.0

EXP4(.P)
R

-59.2 -81.0 -90.7 -95.4

EXP4(.P) -60.5 -94.3 N/A N/A

CA
3
NONY 50.4 354.9 9196.3 62451.0

(C)EXP3 -66.4 -1370.0 -68410.5 -940766.0

EXP4(.P)
R

-65.1 -1186.8 -66921.8 -954283.6

EXP4(.P) -66.4 -1375.8 N/A N/A

follow the courteous convention of Algorithm 1, the system con-

verges to a state where no resources remain un-utilized and there

are no collisions (Theorem 13 of [12]). Furthermore, Theorem 3.1

argues for fast convergence. The former are both corroborated by

Figure 1 (similar results (> ×102 faster convergence) were acquired

for R ∈ {2, 8, 16} as well.). Figure 1 depicts the total utilization

of resources for a simulation period of T = 10
6
time-steps. Note

that the x-axis is in logarithmic scale. CA
3
NONY converges sig-

nificantly (> ×102) faster than the bandit algorithms to a state of

100% efficiency. On the other hand, the bandit algorithms exhibit

high variance, never achieve 100% efficiency, and are not able to

handle efficiently the increase in context space size and number of

resources.

4.2.2 Fairness. The usual predicament of efficient equilibria for

allocation games is that they assign the resources only to a fixed

subset of agents, which leads to an unfair result (e.g. an efficient PNE

is for R agents to access and N − R agents to yield). This is not the

case for CA
3
NONY , which converges to an equilibrium that is not

just efficient but fair as well. Due to the enforcedmonitoring scheme,

all users acquire the same amount of resources. As a measure of

fairness, we will use the Jain index [17]. The Jain index exhibits a

lot of desirable properties such as: population size independence,

continuity, scale and metric independence, and boundedness. For

an allocation game of N users, such that the nth user receives an

allocation of xn , the Jain index is given by J(x) =
��∑n∈N xn

��2 /
N
∑
n∈N x2n . An allocation is considered fair, iff J(x) = 1.

Table 1 presents the expected Jain Index of the evaluated al-

gorithms at the end of the time horizon T . CA3
NONY converges

to a fair equilibrium, achieving a Jain index of 1. The EXP4
R
and

EXP4.P
R
were the fairest amongst the bandit algorithms, achieving

a Jain index of close to 1. This is to be expected since the set of

expertsM is limited to the same set of equilibria that CA
3
NONY

converges to. On the other hand, the rest of the bandit algorithms

(EXP4, EXP4.P, EXP3) performed considerablyworse, with the EXP3
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exhibiting the worst performance in terms of fairness, equal to a

PNE’s: JPN E (x) =
R2

NR =
1

K = JEXP3(x). The clustered pairs of

bandit algorithms in Tables 1 & 2 exhibited < 0.5% difference, hence

we included the average value of the pair.

4.2.3 Average Payoff. The average payoff corresponds to the

total discounted payoff an agent would receive in the time horizon

T . This is an important metric since it is an essential indicator of the

algorithm’s individual performance. Table 2 presents the average

payoff for the studied algorithms. The discount factor was set to

δ = 0.99. At the top half we do not assume any indifference period,

while at the bottom half we assume quasilinear indifference period

(δt = 1,∀t ≤ Tind , where Tind is given by Equation 7).

Once more, CA
3
NONY significantly outperforms all the bandit

algorithms. The latter have relatively similar performance, with

EXP4
R
and EXP4.P

R
being the best amongst them. It is worth noting

that adding an indifference period has a dramatic effect on the re-

sults. CA
3
NONY achieves a large increase on average payoff, while

the opposite happens for the bandit algorithms. This is because the

learning rule of Algorithm 1 prohibits from accessing an already

claimed resource, thus there are no collisions after the first round

(of each joining player in a dynamic population) and the payoff is

≥ 0. On the contrary, bandit algorithms constantly explore (they

assign a positive probability mass to every arm) which leads to

collisions. In a multi-agent system where every agent learns this

can have a cascading effect. The latter becomes apparent when

fixing δ = 1 for Tind steps. The collision cost remains high for

longer which, as seen by Table 2, has a significant impact on the

bandit algorithms’ performance.

4.2.4 Large Scale Systems. The innovation of CA
3
NONY stems

from the adoption of a simple convention which in turns allows

its applicability to large scale multi-agent systems. To evaluate the

latter, Figures 2 and 3 depict the convergence time for increasing

number of resources R, and increasing context space size K respec-

tively. Both graphs are in a double logarithmic scale, and the error

bars represent one standard deviation of uncertainty. The total num-

ber of agents for each simulation is given in both cases byN = R×K .
Thus, the two largest simulations involve 16×1024 = 16.384 agents.

Along with CA
3
NONY , we depict the fasted (based on the previ-

ous simulations) of the bandit algorithms, namely EXP3. In both

cases we acquire ×103 − ×105 faster convergence. The above vali-

date CA
3
NONY ’s performance in both scenarios with abundance

(N ≈ R or small K), and scarcity of resources (N ≫ R or large

K). As depicted, CA3
NONY is significantly faster than the EXP3

and can gracefully handle an increasing number of resources, and

large context spaces. Finally note that, in several of the simulations,

EXP3 was unable to reach its convergence goal of 90% efficiency

(utilization of resources) in reasonable amount of computation time

(1.5 × 108 time-steps), hence the resulting gaps in EXP3’s lines in

Figures 2 and 3. Especially in situations with scarcity of resources

the utilization was significantly lower.

5 CONCLUSION
In this paper we proposed CA

3
NONY , an anti-coordination frame-

work under rationality constraints. CA
3
NONY is based on a simple

Figure 2: Convergence time for increasing number of re-
sources R and varying context space sizeK ,N = R×K (double
log scale).

Figure 3: Convergence time for increasing context space size
K and varying number of resources R, N = R ×K (double log
scale).

convention of courtesy, which prescribes a positive back-off prob-

ability in case of a collision. Coupled with a monitoring scheme

which deters the monopolization of resources, we proved that the

induced strategy constitutes an approximate subgame-perfect equi-

librium. We compared CA
3
NONY to state-of-the-art bandit algo-

rithms, namely the EXP4, EXP4.P and EXP3. Simulation results

demonstrated that CA
3
NONY outperforms these algorithms by

achieving more than two orders of magnitude faster convergence,

while converging to a totally fair allocation, and providing higher

average payoff for the agents. The efficiency of CA
3
NONY stems

from the adoption of the human-inspired convention of courtesy.

The aforementioned gains corroborate our choice and suggest that

human-inspired conventions may prove beneficial in other ad-hoc

coordination scenarios as well or other classes of anonymous games.
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