
Addressing Concept Drift in Reputation Assessment
Caroline Player

University of Warwick
Coventry, West Midlands
c.e.player@warwick.ac.uk

Nathan Griffiths
University of Warwick

Coventry, West Midlands
nathan.griffiths@warwick.ac.uk

ABSTRACT
Evaluating trust and reputation in environments where agent be-
haviours are highly dynamic is challenging. In this paper, we ad-
dress the limitations of existing methods when agent behaviours
can change at varying speeds and times across a system. Modelling
such environments as a multi-agent system, we propose a method
that expands on existing trust, reputation and stereotype models
and uses concept drift detection to identify and exclude unrepre-
sentative past experiences. Our method improves the selection of
relevant data for evaluating trust and reputation, without excluding
relevant historical data (as is the case with sliding windows and
forgetting factors). We show that our approach enables agents to
achieve higher utility than existing methods, by more accurately
and robustly evaluating trust and reputation with respect to dy-
namic agent behaviours.

1 INTRODUCTION
A service oriented architecture (SOA) is a system where service
providers and consumers interact to achieve goals. With the growth
of the Internet, SOAs are becoming more prevalent and can be used
for mobile ad-hoc networks, crowd sourcing applications, the In-
ternet of Things and peer-to-peer networks. However, this means
exposing more devices to unreliable and potentially malicious in-
teraction partners [28]. Therefore, it is vital to identify trustworthy
interaction partners, but this is challenging in an open and dynamic
environment. An SOA is frequently modelled using autonomous
multi-agent systems (MAS) where agents use trust and reputation
models to choose who to exchange information with [21, 25]. In
MAS, trust is the expectation one agent has in another to perform
a task, and is typically calculated using past experiences with the
agent [7]. This is challenging when agents can frequently change
their behaviour, because past experience is no longer an indication
of future performance. We believe that it is realistic to assume that
agents’ abilities may change at different times and speeds from
others because their current quality of service (QoS) can be af-
fected by time sensitive features including connectivity, task load
and demand [17]. However, existing trust and reputation models
commonly use sliding windows and forgetting factors, which are
limited in their ability to select data which is representative of an
agent’s current behaviour.

In an open network, where agents are continuously arriving and
leaving, there may be agents that have not had any interactions and
therefore there are no direct experiences from which to assess trust.
However, agents may display observable features which are similar
to the non-functional requirements of entities in an SOA which
contribute to QoS. Where agents have observable features we can
use stereotypes, an approach that assumes an agent might behave
similarly to others who share the same observable features. One

advantage of assuming agents have stereotypical behaviour is that
themethod to select relevant data is more proactive. For example, by
identifying a negative change in an agent’s behaviour who shares
a location with another agent, we might assume that connectivity
there is currently poor and therefore neither agent is trustworthy.
By identifying stereotypes we can also harness information from
multiple agents to identify behaviour changes, for example, we will
notice bad connectivity in a location by considering the experiences
from all the agents in a location.

In this paper, we propose a method, the AdWin Tree, for agents
to ignore data that is no longer relevant to trust and reputation
assessment. This method integrates concept drift detection from the
Adaptive Windowing (AdWin) algorithm with trust, reputation and
stereotype assessments which are more suited to addressing the
uncertainty in MAS. We evaluate our work using Beta Reputation
System (BRS) and Burnett et al.’s stereotype decision tree [2, 12].

Our results show that the integration of change detection allows
agents to perform better and more consistently when gradual and
sudden drift in behaviour occurs for multiple agents. Our method is
robust against noisy observable features, and we demonstrate that
it outperforms existing work because the adaptive window does
not require prior knowledge of the rates and times of behaviour
change in order to tune parameters.

2 BACKGROUND
There are a number of existing trust, reputation and stereotype
techniques that account for changes in agent behaviour. We dis-
cuss these models, their limitations, and introduce concept drift
detection in this section.

2.1 Trust, Reputation and Stereotypes
In MAS, agents use their direct experiences with others to estimate
how they will behave in the future [13]. There are a variety of mod-
els for estimating trust, reputation and stereotypical trust. Selecting
the most appropriate depends on what information is available,
including representations of outcomes, task decomposition, and
observable features of agents. Additionally, the selection depends
on whether agents know enough about the environment either in
advance, or at run time, to accurately tune the parameters of the
models. In this paper, we propose a method that avoids the require-
ment of knowing the rate of behaviour change, and times of any
sudden change, in advance. Multi-dimensional approaches to trust
can be appropriate if the necessary granularity of information is
available. For example, agents using REGRET can rate different as-
pects of an interaction such as the price and quality of a product [22].
Some trust and reputation systems allow agents to have subjective
opinions, for example an agent can be perceived as “good” or “quite



helpful”. These opinions can be used in fuzzy logic models, which
take these subjective descriptions into account [8, 9, 16, 18, 24].

A reputation system collects, aggregates and distributes feed-
back about agents’ past behaviour [20]. In this work, we adopt Beta
Reputation System (BRS), a mathematically rigorous reputation
model which aggregates witness reports to estimate the expected
behaviour of an agent and uses subjective logic to account for un-
certainty when there is a small data sample [12]. BRS is general
enough to suit many applications, however, any trust assessment
method can be substituted, as described in Section 4. Extensions
to BRS have been proposed to tackle issues such as bias in witness
reports from lying reputation sources, or fromwitnesses with differ-
ent perceptions of “good” and “bad” outcomes, such as the TRAVOS,
BLADE and FIRE models, amongst others [11, 19, 26, 30]. However,
there are no existing reputations systems that focus on statistically
identifying whether witness reports are representative of the target
agent’s current behaviour given that it may have changed. HABIT
is a statistical reputation assessment technique which relaxes the
requirement of knowing in advance the number of features that in-
dicate QoS in an SOA [25]. However, there is limited consideration
of the effect of time on trust assessment.

Inspired by Swift Trust [5], stereotypes estimate the behaviour of
another agent by exploiting the intuition that an agent will behave
similarly to those who have the same observable features. Our work
focuses on environments in which agents’ behaviours can change,
and if we assume that agents who share certain features will behave
similarly then this implies that their behaviour will change in the
same way. Stereotypes enable us to use interaction records from
multiple agents to statistically monitor their behaviour over time
and identify changes in an individual agent who is a member of
that stereotype.

Stereotypes associate reputation with observable features (in-
stead of agent identities as in traditional trust and reputation ap-
proaches). Trust can be calculated after an interaction, for example
with BRS, and is recorded alongside the agent’s observable fea-
tures. Burnett et al. use an M5 decision tree to identify correla-
tions between observable features and trust [2–4]. The advantage
of this approach is that the identified stereotypes are described
by the leaves of the decision tree. The StereoTrust model assigns
agents an a priori assessment of their behaviour based on the trust
they have in other agents who are observably similar, weighted
by the extent of that similarity [15]. STAGE describes agents us-
ing a graph-based ontology and identifies patterns of trustworthy
and non-trustworthy agents [23]. This addresses the limitations of
some machine learning techniques that can only find correlations
between feature values and behaviours by finding patterns in the
relationships between features.

Almost all stereotype methods assume that agents can fully and
accurately perceive feature values, with the exception of Burnett et
al. who use imputation to replace missing values [4]. In this paper,
we also assume that agents can accurately perceive all of another
agent’s observable features, as we focus on the problem of changing
agent behaviours. We do not assume that agents can distinguish
between the observable features that affect behaviour and those
which do not and this is one of the challenges that we explore in
our evaluation.

Some trust, reputation and stereotypemodels account for changes
in behaviour over time with a sliding window or forgetting fac-
tor [11, 12, 14, 19, 26]. A sliding window of size n keeps the most
recent n experiences. The intuition is that the most recent n in-
stances capture an agent’s current behaviour, and older interaction
records are no longer relevant. A forgetting factor has a similar
effect, by retaining all records but weighting recent interactions
higher than older ones. These approaches can be effective in simple
environments, however several issues impact on their generality.
First, choosing the window size or rate of forgetting is problematic.
If an agent forgets old instances too quickly it will lose relevant data
that could help make more accurate calculations. Conversely, if too
much information is retained then agents will make assessments
based on data that no longer represents current behaviours. The
optimal values will depend on the application. Second, the optimal
values for window sizes or forgetting factors can vary over time.
Third, agents may not change their behaviour at the same rates,
and so a global window or forgetting factor will not suit all agents.
Finally, sliding windows and forgetting factors are only effective
in coping with gradual change rather than sudden changes, which
may occur at different times for different agents.

2.2 Concept Drift
We investigate whether concept drift techniques, which detect
changes in correlations between a feature set,X , and a class valueY ,
can be applied to identifying changes in agent behaviour. Many ma-
chine learning models rely on the assumption that, aside from noise,
the joint probability of the features and the target remains static
over time i.e Pt (XY ) = Pt ′(XY ) for all times t and t ′ [29]. This
assumption may hold for some offline learning tasks, but many
applications have vast quantities of data that are continuously re-
quiring online learning to adapt to changes in correlations. Concept
drift techniques aim to detect when such relationships change over
time, meaning Pt (Y |X ) , Pt ′(Y |X ) [27]. For example, when the
connectivity in a location changes, that location may no longer
correlate with the QoS originally learned from data in that area.

A concept can change gradually or suddenly. If the correlation
between a set of feature values and a class value instantly changes
to a new class value then sudden drift has occurred. A slow progres-
sion of one concept becoming less prevalent while another begins
to dominate is known as gradual drift. Gradual drift is harder to
detect, especially when the differences in the two concepts are not
empirically large but are important [10].

The change detection element of concept drift algorithms identi-
fies a point in time where concept drift has occurred. This can be
used to update interaction data records for trust, reputation and
stereotype assessment. In concept drift literature there are two com-
mon techniques to manage the data once change has been detected.
First, to forget data according to a time based function, and second
to use a window of recent data of fixed or variable size [6]. These
share many of the problems described above when they are used
with trust and reputation techniques. However, some concept drift
techniques can handle more complex scenarios such as detecting
and handling varying rates of change.

The Adaptive Windowing (AdWin) model uses a variable win-
dow size that can adapt to sudden and gradual changes by saving
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Table 1: Example profiles when k = 5, pGr = 0.1 and pSu = 0.005

Profile Initial
Behaviour

pnGr pnSu
−→τ

0 0.833 p0Gr = 0.073 p0Su = 0.001

relevant features︷         ︸︸         ︷
1, 0, 1, 0, 1, 0,

noisy features︷︸︸︷
1, 0, 0

1 0.5 p1Gr = 0.000 p1Su = 0.002 0,0,1,0,1,1,1,1,0

2 0.167 p2Gr = 0.097 p2Su = 0.000 0,1,0,0,0,1,1,0,1

3 0.667 p3Gr = 0.092 p3Su = 0.005 0,1,0,0,1,1,0,1,1

4 0.333 p4Gr = 0.023 p4Su = 0.003 1,1,1,0,0,1,1,0,0

data that is statistically assessed to be drawn from the same distri-
bution as previous data and therefore is relevant [1]. If a change is
detected then any data from before the change is forgotten, which is
synonymous with shrinking the window. The method we propose
in this paper integrates concept drift detection using AdWin to a
trust, reputation and stereotype assessment system.

3 AGENT MODEL
This section describes the agent interaction environment which is
based on the approaches from Burnett et al. and BRS [2, 12].

A set of agents is divided into trustors, Atr , and trustees, Ate .
The two sets are connected in a complete bipartite graph where a
trustor represents a service consumer, i , trying to identify a trust-
worthy service provider, a trustee, j. Agents can be described by
their ID and their observable features, denoted as a vector, −→τj , for
agent j. Each feature corresponds to a characteristic of an agent,
for example the technical specifications of a device in a network.
Some features correlate with behaviour, known as relevant features.
Additionally, agents have noisy features, also known as irrelevant
features, whose values are assigned at random to the agent. This
represents a realistic assumption that not all observable charac-
teristics of an agent affect, or are indicative of, their behaviour.
Such features are included because we cannot assume that agents
know which features correlate with behaviour in advance. The
number of relevant and noisy features each agent has, nr f and nnf
respectively, are experimental parameters.

We define k profiles which dictate the relevant features, be-
haviour and rates of behaviour changes for the agents of each
profile. This enforces the assumption that agents who share rel-
evant feature values behave the same. Noisy feature values are
assigned randomly, independently of the profile, and will differ
between agents of the same profile. Relevant feature values of the
profiles are the centroids generated from applying k-means cluster-
ing to all permutations of nr f relevant features. Table 1 presents
example profiles where k = 5 and the values are taken from one of
the experimental runs. We use binary feature values for simplicity
and comparison to existing work, however the stereotype model
we use can handle numeric and categoric attributes. Table 1 de-
picts the noisy features appended to the end of the feature vector
for illustration, however, they may be interleaved. Trustors do not

know in advance which features are relevant or noisy but instead
the stereotype model should learn these from the data.

The behaviour of agent i , defined by the profile i belongs to, is
represented as a real value Bi ∈ [0, 1] indicating the proportion
of interactions they behave well in. For example, if Bi = 0.7 then
agent i will behave and be perceived as good in 7 out of 10 inter-
actions on average. Trust, reputation and stereotype systems aim
to estimate the behaviour of agents, in order to identify the agent
most likely to behave well in its next interaction [12]. The value of
initial behaviours are evenly distributed within the range [0, 1] but
can then change over time gradually or suddenly. We define the
environmental parameters pGr and pSu such that each profile n is
assigned a local random value, pnGr in the range [0,pGr ], and pnSu
in the range [0,pSu ]. This allows profiles to change behaviour at
different speeds. Gradual change occurs by assigning each profile
a random target behaviour and probabilistically with a chance of
pnGr , altering their current behaviour by 0.01 towards the target.
Similarly for sudden change, a random target behaviour is chosen
and immediately switched to with a probability of pnSu each round.
Once a profile’s actual behaviour has reached the target behaviour,
a new random target behaviour is chosen for that profile. Figure 1
depicts how the value for behaviours of each profile change over
time in one experimental run given the parameters from Table 1.

One timestep, in which the trustors choose one trustee to interact
with who they believe has the highest expected utility, is considered
a round. Trustees can only be chosen by one trustor per round
and the order in which trustors choose their partners is random
each round. An interaction in an SOA represents an exchange of
information between a service provider and consumer. According to
BRS, the trustor perceives the outcome, determined by the trustee’s
behaviour, as either good or bad. Trustors maintain a history of
their interactions, O, as a set of tuples in the form ⟨j,−→τj , t , r j , sj ⟩,
where j is the trustee’s ID, −→τj is j’s feature vector, t is the time of the
interaction, r j and sj are the number of good and bad experiences
with j respectively up to time t , including the witness reports i
received at the time of the interaction.

As we model open systems, at the end of a round trustees can
leave the networkwith a probability Pte . They are replaced by a new
agent of the same profile, thus maintaining a constant distribution
of agent behaviours.
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Figure 1: Example of 5 profiles changing behaviour over
time, pGr = 0.1 and pSu = 0.005

4 ESTIMATING EXPECTED BEHAVIOUR
Our method is evaluated using BRS and Burnett’s decision tree
and we will refer to this instantiation of our method as the AdWin
Tree, to identify relevant data for calculating expected behaviour [2,
12]. We use Burnett’s stereotype model because it outputs a set of
identified stereotypes, −→S , which we can monitor. These stereotypes
are found by correlating the observable features with an agent’s
trust which is calculated using a trust and reputation function TR.
Our method takes in the set of discovered stereotypes, the existing
data, and the new outcome after an interaction at time t , ot , and if a
change is detected, it will alter the dataset, i.eO ← f (

−→
S ,O,ot ). The

trust and reputation model used,TR, could be substituted, provided
that its output is normalised to be in the range [0, 1]. Choosing an
appropriate TR is application dependent.

4.1 Bootstrapping Trust with Stereotypes
Recall that trustor i maintains an interaction history O, where an
entry has the number of good and bad interactions with agent j,
r j and sj respectively, up to time t . For now, we assume the tuple
maintains relevant data. The belief, b, in a trustee is their expected
behaviour based solely on their previous interactions, calculated
using Equation 1. To account for uncertainty in this belief, an a pri-
ori, a, is weighted by a factor, u, calculated using Equation 2, which
decreases as more interaction experiences are collected, signifying
a higher confidence in the belief factor. The default value for a is
0.5, which assumes that an agent is neither good nor bad. Once the
trustor has enough data to build the stereotype model, a is replaced
by stereotypical trust. The overall expected behaviour, trust(j), is
calculated using subjective logic using Equation 4 according to
BRS [12].

bj =
r j

r j + sj + 2
(1)

uj =
2

r j + sj + 2
(2)

aj =

{
stereotype(−→τj ), if using stereotypes
0.5, otherwise

(3)

trust(j) = bj + uj × aj (4)

Figure 2: Example AdWin Tree

The values of r j and sj are an aggregation of good and bad
interactions with j from available trustors as well as personal inter-
actions, as defined in Equation 5. We assume that witness reports
are honest, and therefore both direct and indirect experiences are
weighted equally [2, 12]. If we removed this assumption, then other
trust and reputation models could substitute BRS to tackle biased
and lying reports [19, 25, 26]. If the trustor has detected behaviour
change in the trustee, then it will only request witness reports from
tuples timestamped after that change.

r j =

Atr∑
tr

r trj , sj =

Atr∑
tr

strj (5)

The learning interval, L, determines how frequently a trustor
rebuilds the stereotype model and also the size of the fixed window
when the adaptive window is not being used. The data used to train
the decision tree comes from each record in the trustor’s interaction
history, O. The feature set and class attribute used are: ⟨−→τ , trust(j)⟩,
where trust(j) is calculated using r j and sj from the respective entry
in O and Equation 4. An M5 decision tree can handle a numeric
class attribute because each leaf has a linear regression model (LM),
trained on the class values of the data at the respective leaf. To assess
stereotypical trust, trustors classify the observable features of a
trustee, which outputs the a priori expected behaviour in the range
[0, 1]. When there are few direct experiences with the trustee the
uncertainty will be high, giving more weight to stereotypical trust.
The decision tree allows trustors to identify stereotypes without
knowing how many agent profiles exist in advance.

By default, the M5 algorithm prunes the decision tree. This can
prevent over-fitting behaviour assessments to irrelevant features
and overestimating the number of stereotypes in the population.
However, in the context of assessing behaviour in MAS, the class
value is an estimate of agent behaviour rather than a true value,
therefore it can be inaccurate. Due to this error, pruning the tree is
sometimes counter productive. We modify the M5 algorithm to not
prune a node if the subtree has the same error, where originally it
would get pruned. This only prevents pruning occasionally, how-
ever, this preserves some identified stereotypes by accounting for a
little more error.

4



(a) Gradual drift only
pGr = 0.1

(b) Sudden Drift only
pSu = 0.005

(c) Gradual and sudden drift
pGr = 0.1, pSu = 0.005

(d) Legend

Figure 3: Average Utility - AdWin Tree vs fixed window sizes

4.2 AdaptiveWindow Decision Tree (AdWin
Tree)

Each leaf of a trustor’s decision tree represents their estimate of an
agent profile i.e a stereotype. We build an AdWin model at each leaf,
as depicted in Figure 2, to monitor for profiles changing at different
rates and times. The accuracy of the concept drift model is bottle-
necked by how accurately the decision tree identifies agent profiles.
If one leaf incorrectly represents multiple profiles the data will be
more noisy and prevent the concept drift model from accurately
detecting drift in one profile. We implement the AdWin 2 algorithm
which uses an exponential histogram data structure to improve
time and space efficiency over the original AdWin formulation [1].
The detected point of change can still be extracted to adjust the
memory for trust and reputation models. However, we describe
AdWin because its linear data structure allows for a more logical
explanation of the algorithm1.

4.2.1 Detecting Drift. Once the decision tree is built, an AdWin
model is created at each leaf using the data at that leaf. To detect
concept drift in the first L interactions, each instance must be added
to the new concept drift model one at a time. Any drift detection is
handled as described below in Section 4.2.2.

Once a tree is built with data where no drift is detected, the
trustor proceeds with interactions. After each interaction, the bi-
nary outcome is appended to the window of the AdWin model at
the appropriate decision tree leaf, which is found by classifying the
trustee’s observable features. This binary outcome does not affect
the LM model at that leaf because this is only refactored when
the tree is rebuilt, which is every L interactions or when concept
drift is detected. The AdWin model concatenates the new result
to the end of a variable size window, which contains the data at
that leaf up to that point in time. To detect if drift has occurred, the
window is divided into every possible split of two subwindows. The
distributions found to fit the data of each subwindow are compared
and if they are within a margin of similarity then it is assumed that
no concept drift has occurred.

The inputs to the AdWin algorithm are a confidence value δ ∈
(0, 1) and a sequence of real values x1,x2, ...,xt ∈ (0, 1) where
the value of xt is made available at time t , and represents the
1The original AdWin code provided by Bifet [1] which was adapted for this work can
be found at https://github.com/abifet/adwin/.

outcomes from interactions. We use δ = 0.2 as a suggested value
from the original work, and from experimental results we saw
little difference from changing this value in this application of the
algorithm. Each xt is generated according to a distribution Dt ,
however the distribution may change over time. This represents
the changing behaviour of agents in a profile. The mean, expected
value of xt , and expected variance of xt are µt and σ 2

t according
to Dt , where µt and σ 2

t are unknown for all t and can only be
estimated by trustors assessing behaviour.

A windowW holds the most recently read xi , with µ̂W being the
observed average of the elements inW , and µW is the unknown but
true average of the elements inW . The window can change size
and we denote its length at any point as n. The values of µt , the
mean of Dt from which xt was drawn at time t , can oscillate over
time as concept drift occurs. Therefore, it is possible that neither
µW or the observed mean µ̂W will be near to µt , even as the length
of the window gets increasingly long. However, µ̂W will become a
closer estimate of µW as n increases.

Concept drift is identified when the windowW is divided into
two subwindows, which exhibit “distinct enough” averages, imply-
ing their respective expected values originate from different distri-
butions. In this case, the older of the two subwindows is deleted
from the original windowW . Therefore, the window decreases
while the statistical tests show that µt has changed significantly
inW within the confidence δ . Another test could be used, but in
this paper we choose the default test from the AdWin technique,
as explained below. Each step of AdWin outputs the value µ̂W as
an approximation of µW .

The two subwindows are considered to be generated by different
distributions if the difference between their means is larger than
ϵcut , a variable calculated with the user specified confidence input
δ . For a partition of windowW intoW0 ·W1, ϵcut is computed
as follows: n0 and n1 are the lengths ofW0 andW1 respectively
(n = n0+n1). Let µ̂W0 and µ̂W1 be the averages of the values in their
respective subwindows. And µW0 andµW1 are their expected values,
resulting in the following:
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m =
1

1
n0
+ 1

n1

(6)

δ ′ =
δ

n
(7)

ϵcut =

√
1
2m
· ln

4
δ ′

(8)

4.2.2 Handling Drift Detection. If the AdWin algorithm detects
that drift occurred at time t ′ at one of the leaves, then the agent
needs to remove entries from before time t ′ from their interaction
history, O, for any agent associated with that stereotype. Entries
more recent than t ′ contain the aggregate of events with a trustee
including from before t ′, therefore these records must be updated
according to Equation 9. The M5 decision tree is rebuilt after the
data has been updated.

⟨j,−→τj , t , r j , sj ⟩ ← ⟨j,
−→τj , t , r j − r

t ′
j , sj − s

t ′
j ⟩ (9)

Because witness reports were included at the time the interaction
occurred, this will also remove outdatedwitness reports. The overall
effect is that both trust and stereotype calculations from the point
of change detection onwards are not utilising any data that has
been deemed redundant. An advantage of building separate AdWin
models at the leaves of the stereotype decision tree is that data is
retained as appropriate for each stereotype. This can account for
how different agent profiles can change behaviour at different rates
and times.

5 EVALUATION AND RESULTS
This section presents the results of the AdWin Tree compared to
the original work from Burnett et al. on bootstrapping trust with
stereotypes using a fixed window size [2]. The performance metric
is the average outcome or utility for trustors in each round, since
the model which correctly identifies the best behaving partners will
receive the most utility. Accuracy, precision, recall or error do not
reflect a trustor’s ability to select the best partner, as it is the ability
to rank agents by behaviour which is important. A model which
produces a correct ranking may have quite a high error but still
perform best. However, we include some results on the error of our
model to demonstrate that it improves upon existing work and this
may be useful in some contexts. All results presented were found to
be statistically significant with p < 0.001 in paired t-tests using the
area under the curve to remove the time dependency. We include
error bars showing plus and minus one standard deviation of the
mean results.2. For comparison to the work in Burnett et al., we use
20 trustors and 500 trustees, where there are 100 trustees of each
profile reflecting an even distribution of profiles in the population.

5.1 Comparison to Fixed Windows
First, we compare the performance of using an adaptive window,
the AdWin Tree, to using fixed windows. Figure 3d is the legend
for all the results in this section. Figures 3a, 3b and 3c show an
increasing volatility of dynamic behaviours and how well agents
2Some error bars appear higher than the optimal, however as an agent’s behaviour is
a probability, the average of a small number of interactions will not perfectly align
with their behaviour.

(a) pGr = 0.1 (b) pGr = 0.2

Figure 4: Gradual drift only

(a) pSu = 0.001 (b) pSu = 0.005

Figure 5: Sudden drift only

using either the AdWin Tree or fixed windows of sizes of 50, 100 or
200, perform. The adaptive window outperforms the fixed window
sizes consistently. We can also observe that no fixed window size
is better than another. Different profiles are subject to different
rates of behaviour change, and therefore each profile would suit a
different window size. However, the adaptive window can change
for each profile, and also does not need to know the rate of change
in advance. Using a fixed window would require this information
in advance to apply the best window size.

5.2 Gradual and Sudden Drift
Sliding windows are designed to handle a known, constant rate of
gradual drift, the results of which are shown in Figure 4, where
Figures 4a and 4b show different maximum rates of gradual change,
pGr . Each profile n has a rate of gradual change in the range 0 to
pGr , and not all profiles are changing at the maximum rate pGr .
The values of pGr and pSu have been chosen because a profile n
whose pnGr is the maximum value of pGr could have such volatile
behaviour that the data received from interacting with agents of
profile n appears as noise. Although the parameter values seem
low, Figure 1 illustrates how quickly behaviours are changing when
pGr = 0.1 and pSu = 0.005.

If a fixed sliding window is the optimal size for the rate of gradual
change of behaviour, then it can move with the incoming data
such that it retains only representative data. A disadvantage of the
adaptive window is it must collect sufficient unrepresentative data
before it can detect that there has been a change in the underlying
distribution generating the outcomes. Therefore, before the change
can be detected, but after it has happened, the adaptive window
will be making predictions with some unrepresentative data. This is
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only a disadvantage compared to the perfect fixed window size, and
as discussed earlier, there may not be one single perfect window
size for all the profiles in the environment. Therefore, the AdWin
Tree outperforms the original model during gradual drifts in agent
behaviour because it adapts to suit the current detected rate of
change in the environment for any identified stereotypes, while
the original model is limited to using the same arbitrary size for all
profiles. Finally, the original model still performs quite well because
of the low agent turnover rate which fosters repeat interactions.
This allows direct experiences to take precedence according to
Equation 4, and these records are more up to date compared to the
interaction records with agents who have left the system already
but whose data may still be contributing to stereotypical trust
assessment.

Sliding windows do not account for sudden drifts, however these
may occur in many applications. Figure 5 isolates the effect of
sudden drift i.e pGr = 0. An agent profile changing its behaviour
to a new random value is uncommon, therefore low values for
pSu are considered, but the difference in sudden drift between
Figures 5a and 5b is large enough that the results fluctuate more
for both models. As the sudden changes in behaviour become more
common both models perform slightly worse, but the AdWin Tree
remains robust against this volatility. The AdWin Tree recovers
quickly by shrinking the window when sudden change is detected
for one profile, while the original model takes longer to forget old
behaviour because of its fixed window size.

Sudden changes in behaviourmay occur after any amount of time
of steady behaviour, and therefore the AdWin Tree benefits not just
from its ability to shrink the window when a change in behaviour
is detected, but also from growing the window when no change
is detected. As the window size increases there is significantly
more data with which to make a more accurate trust assessment
compared to the limited size of the fixed window.

5.3 Noisy Features
We briefly demonstrate that both models are robust to noisy fea-
tures in Figure 6. Identifying noisy features when behaviour is
static is an important but relatively easy task compared to when
there is concept drift. As behaviours change, some noisy features
may coincidentally correlate with behaviour for a period before be-
haviour changes again, making them harder to distinguish. Ideally
the model should handle a high proportion of noisy features, as we
do not assume that agents have advance knowledge about which
features correlate with behaviour. All previous results have been
demonstrated where nr f = 6 and nnf = 6.

One major bottleneck to the efficacy of this work is how accu-
rately the agent profiles are recognised as stereotypes. Each leaf
of the decision tree represents a stereotype, where a stereotype is
an estimation of a profile. We can see from Figure 7 that neither
model has 5 leaves to represent the 5 profiles in the system. While
the stereotype tree uses a Linear Regression model for predicting
trust values at its leaves and therefore has this final ability to dis-
tinguish some different trust values for different profiles, the data
stored from experiences are all at this one leaf. For the adaptive
window especially, this means it cannot accurately detect changes
in behaviour which occur specifically in one profile.

(a) nnf = 2 (b) nnf = 6

Figure 6: Varying noisy features

Figure 7: Number of decision tree leaves given increasing
amount of noisy features

Both models are fairly robust to noisy features, in part because
a trust and reputation algorithm does not take noisy features into
account, and trustors give precedence to direct experiences over
stereotypes when they are available. However, more accurately
identifying stereotypes would improve this further, especially in
contexts where there is a limited availability of direct experiences.

5.4 Error
Selecting the partner with the highest chance of performing well
requires some level of accurate trust assessment. Here, we show
the root mean squared error (RMSE) of the AdWin Tree compared
to the fixed window model is considerably lower, and this will
be a contributing factor to its performance. Initially, the original
model has relatively low error, however as behaviour begins to
change, when the stereotype model is rebuilt, it has conflicting
data compared to the adaptive model which is selecting only data
it believes reflects current behaviours.

Ultimately, only the correct ranking of a few top agents is re-
quired to select the best agent, even if the assessments themselves
have a high level of error. Equally, a technique with low error may
not have identified the true best behaving agent, preventing it from
performing well. As discussed earlier, one reason for an error rate
as high as 0.2 is because the profiles may not have been accurately
identified, and therefore stereotype predictions for an agent are
derived from data from a mixture of profiles.
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Figure 8: Average RMSE, pGr = 0.1, pSu = 0.001

6 DISCUSSION AND CONCLUSION
Changing agent behaviours can prevent existing trust, reputation
and stereotype models from accurately assessing agents because
they rely on past interaction data which may no longer represent
their current behaviour. Existing work uses methods which give
a higher weighting to more recent interactions. However, these
techniques use the same weighting for all agents’ past experiences
when agents’ behaviours may be subject to different rates of change
or to sudden changes.

In this paper, we proposed the AdWin Tree method and demon-
strated how agents using concept drift detection can select only
relevant data for each agent. Basing this selection on drift detection
rather than time improves their partner selection choices when
agents were subject to a variety of gradual and sudden behaviour
changes. Our work can extend any existing stereotype model to
allow agents to detect the rates of change in an environment, as
these will vary depending on the application.

The AdWin Tree is resilient against changes in agent behaviour,
performing consistently, especially when there are sudden changes.
We demonstrated that compared to the most prominent approach
currently used in trust and reputation, a sliding fixed window, our
model performs either the same or better, with the advantage of
not requiring any parameters to be set. As the window can not
only shrink when changes are detected, but can also grow while
behaviour is believed to be static, the predictions can be far more
accurate than using a window of fixed size. The model is still robust
against a high proportion of noisy observable agent features and it
has a lower RMSE for estimating agent behaviours.

The performance of the adaptive model is bottlenecked by how
accurately the decision tree can identify the agent profiles as stereo-
types. Each AdWin model is applied to an identified stereotype,
and if these are inaccurately identified then multiple profiles will
be analysed by one AdWin model, making it harder to identify
changes in just one profile.

Future work includes investigating contexts where agents are
subject to virtual as well as real concept drift. Another direction
is to explore monitoring behaviour changes or differences in indi-
vidual agents rather than stereotypes, as this would be particularly
helpful in identifying cheating agents who are acting maliciously
but display the observable features of a trustworthy partner.
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