
Achieving Cooperation Through Deep Multiagent
Reinforcement Learning in Sequential Prisoner’s Dilemmas

Weixun Wang, Jianye Hao *, Yixi Wang
School of Computer Software, Tianjin University

Tianjin, China
{wxwang,jianye.hao}@tju.edu.cn,yixiwang2017@outlook.

com

Matthew E. Taylor
Washington State University
Pullman, Washington, USA

taylorm@eecs.wsu.edu

ABSTRACT
The Iterated Prisoner’s Dilemma has guided research on social dilem-
mas for decades. However, it distinguishes between only two atomic
actions: cooperate and defect. In real world prisoner’s dilemmas,
these choices are temporally extended and different strategies may
correspond to sequences of actions, reflecting grades of cooperation.
We introduce a Sequential Prisoner’s Dilemma (SPD) game to better
capture the aforementioned characteristics. In this work, we propose
a deep multiagent reinforcement learning approach that investigates
the evolution of mutual cooperation in SPD games. Our approach
consists of two phases. The first phase is offline: it synthesizes poli-
cies with different cooperation degrees and then trains a cooperation
degree detection network. The second phase is online: an agent adap-
tively selects its policy based on the detected degree of opponent
cooperation. The effectiveness of our approach is demonstrated in
two representative SPD 2D games: the Apple-Pear game and the
Fruit Gathering game. Experimental results show that our strategy
can avoid being exploited by exploitative opponents and achieve
cooperation with cooperative opponents.

KEYWORDS
Multiagent learning; Deep learning; Learning agent-to-agent inter-
actions (negotiation, trust, coordination)

1 INTRODUCTION
Learning is the key to achieving coordination with others in multi-
agent environments [25]. Over the last couple of decades, a large
body of multiagent learning techniques have been proposed that
aim to coordinate on various solutions (e.g., Nash equilibrium) in
different settings, e.g., minimax Q-learning [19], Nash Q-learning
[16], and Conditional-JAL [2], to name just a few.

One commonly investigated class of games is the Prisoner’s
Dilemma (PD), in which a Nash Equilibrium solution is not a de-
sirable learning target. Until now, a large body of work [1, 2, 4, 6,
11, 21, 23] has been devoted to incentivize rational agents towards
mutual cooperation in repeated matrix PD games. However, all the
above works focus on the classic repeated PD games, which ignores
several key aspects of real world prisoner’s dilemma scenarios. In
repeated PD games, the moves are atomic actions and can be easily
labeled as cooperative or uncooperative or learned from the payoffs
[3]. In contrast, in real-world PD scenarios, cooperation/defection
behaviors are temporally extended and the payoff signals are usually
delayed (available after a number of steps of interactions).

Crandall [5] proposes the Pepper framework for repeated sto-
chastic PD games (e.g., two-player gate entering problem), which

can extend strategies originally proposed for classic repeated matrix
games. Later some techniques extend Pepper in different scenarios,
e.g., playing against opponents with changing strategy [7, 13]. How-
ever, these approaches rely on hand-crafted state inputs and tabular
Q-learning techniques to learn optimal policies. Thus, they cannot
be directly applied to more realistic environments whose states are
too large and complex to be analyzed beforehand.

Leibo et al. [17] introduce a 2D Fruit Gathering game to better
capture the real world social dilemma characteristics, while also
maintaining the characteristics of classical iterated PD games. In
this game, at each time step, an agent selects its action based on its
image observation and cannot directly observe the actions of the
opponent. Different policies represent different levels of coopera-
tiveness, which is a graded quantity. They investigate the coopera-
tion/defection emergence problem by leveraging the power of deep
reinforcement learning (DRL) [22] from the descriptive point of
view: how do multiple selfish independent agents’ behaviors evolve
when agents update their policy using deep Q-learning? In contrast,
this paper takes a prescriptive and non-cooperative perspective and
considers the following question: how should an agent learn effec-
tively in real-world social dilemma environments when it is faced
with different opponents?

To this end, in the paper, we formally introduce the general notion
of sequential prisoner’s dilemma (SPD) to model real world social
dilemma problems. We then propose a multiagent deep reinforce-
ment learning approach for mutual cooperation in SPD games. Our
approach consists of two phases: offline and online phases. The
offline phase generates policies with varying cooperation degrees
and trains a cooperation degree detection network. To generate poli-
cies, we propose using the weighted target reward and two schemes,
independent Actor-Critic (IAC) and joint Actor-Critic (JAC), to train
the baseline policies with varying cooperation degrees. Then we
propose using the policy generation approach to synthesize the full
range of policies from these baseline policies. Lastly, we propose
a cooperation degree detection network implemented as an LSTM-
based structure with an encoder-decoder module. The online phase
adaptively selects a policy with the proper cooperation degree from
a continuous range of candidates based on the detected cooperation
degree of an opponent. Intuitively, our algorithm is cooperation-
oriented and also robust against selfish exploitation. We evaluate the
performance of our approach using two 2D SPD games (the Fruit
Gathering and Apple-Pear games). Experimental results show that
our agent can efficiently achieve mutual cooperation under self-play
and also perform well against opponents with switching stationary
policies.

Table 1: Prisoner’s Dilemma
C D

C R, R S, T
D T, S P, P

2 BACKGROUND
2.1 Matrix Games and the Prisoner’s Dilemma
A matrix game can be represented as a tuple ⟨N , {Ai }i ∈N , {Ri }i ∈N ⟩,
where N is the set of agents, Ai is the set of actions available to
agent i with A being the joint action space A1 × . . . ×An , and Ri is
the reward function for agent i. One representative class of matrix
games is the prisoner’s dilemma game, as shown in Table 1. In this
game, each agent has two actions: cooperate (C) and defect (D), and
is faced with four possible rewards: R, P , S , and T . The four payoffs
satisfy the following four inequalities under a prisoner’s dilemma
game:

• R > P : mutual cooperation is preferred to mutual defection.
• R > S: mutual cooperation is preferred to being exploited by

a defector.
• 2R > S + T : mutual cooperation is preferred to an equal

probability of unilateral cooperation and defection.
• T > R: exploiting a cooperator is preferred over mutual coop-

eration.
• P > S: mutual defection is preferred over being exploited.

2.2 Markov Game (Stochastic Game)
A Markov gameM is defined by a tuple ⟨N , S, {Ai }i ∈N , {Ri }i ∈N ,T ⟩,
where S is the set of states and N is the number of agents, {Ai }i ∈N
is the collection of action sets, with Ai being the action set of agent i,
and {Ri }i ∈N is the set of reward functions, Ri : S×A1×. . .×An → R
is the reward function for agent i. T is the state transition function:
S × A1 × . . . × An → ∆(S), where ∆(S) denotes the set of discrete
probability distributions over S . Matrix games are the special case
of Markov games when |S | = 1. Next we formally introduce SPD by
extending the classic iterated PD game to multiple states.

2.3 Definition of Sequential Prisoner’s Dilemma
SPD is a specific form of SSD [17]. SSD models the social dilemma
including prisoner’s dilemma game, stag hunt game and chicken
game, and requires agents to learn policies for implementing the
intention. Following this work [17], specifically, we focus on the se-
quential prisoner’s dilemma (SPD) in social dilemma. A two-player
SPD is a tuple ⟨M,Π⟩, whereM is a 2-player Markov game with
state space S . Π is the set of policies with varying cooperation de-
grees. The empirical payoff matrix (R (s), P (s), S (s),T (s)) can be
induced by policies (πC ,πD ∈ Π), where πC is more cooperative
than πD . Given two policies, πC and πD , the corresponding empiri-
cal payoffs (R, P , S,T) under any starting state s with respect to the
payoff matrix in Section 2.1 can be defined as (R (s), P (s), S (s),T (s))
through their long-term expected payoff, where

R (s) := V πC ,πC
1 (s) = V πC ,πC

2 (s), (1)

P (s) := V πD,πD

1 (s) = V πD,πD

2 (s), (2)

S (s) := V πC ,πD

1 (s) = V πD,πC
2 (s), (3)

T (s) := V πD,πC
1 (s) = V πC ,πD

2 (s), (4)

We can define the long-term payoffV π⃗
i (s) for agent i when the joint

policy π⃗ = (π1,π2) is followed starting from s.

V π⃗
i (s) = Ea⃗t∼π⃗ (st),st+1∼T (st , a⃗t)[

∞∑
t=0

γ t ri (st , a⃗t)] (5)

A Markov game is an SPD when there exists a state s ∈ S for
which the induced empirical payoff matrix satisfies the five inequal-
ities in Section 2.1. Since SPD is more complex than iterated PD,
the existing learning strategies for iterated PD games cannot be
directly applied in SPD. Moreover, in SSD, also exist other types
of dilemma games including Stag hunt game and Chicken games.
Stag hunt game has two Nash equilibria (cooperation, cooperation)
and (defection, defection), and is essentially a coordination game.
Similarly, for chicken game, it also has two Nash equilibria (cooper-
ation, defection) and (defection, cooperation), and is essentially an
anti-coordination game. For both games, the only problem is how
agents can coordinate on the same Nash equilibrium. In contrast, for
SPD games, only mutual defection is a Nash equilibrium. However,
we are interested in agents exhibiting different non-Nash equilibrium
cooperative behaviors against cooperative opponents and defective
behaviors (converging to Nash equilibrium) faced with purely selfish
ones.

2.4 Deep Reinforcement Learning
Q-Learning and Deep Q-Networks: Q-learning and Deep Q-Networks
(DQN) [22] are value-based reinforcement learning approaches to
learn optimal policies in Markov environments. Q-learning makes
use of an action-value function for policy π asQπ (s,a) = Es ′[r (s,a)+
γEa′∼π [Qπ (s ′,a′)]]. DQN uses a deep convolutional neural network
to estimate Q-values and the optimal Q-values are learned by mini-
mizing the following loss function:

y = r + γmaxa′Q̄ (s ′,a′), (6)

L(θ) = Es,a,r,s ′[(Q (s,a |θ) − y)2] (7)

where Q̄ is a target Q network whose parameters are periodically
updated with the most recent θ .

Policy Gradient and Actor-Critic Algorithms: Policy Gradient
methods are for a variety of RL tasks [27, 29]. Their objective is to
maximize J (θ) = Es∼pπ ,a∼πθ [R] by taking steps in the direction of
▽θ J (θ), where

▽θ J (θ) = Es∼pπ ,a∼πθ [▽θ loдπθ (a |s)Qπ (s,a)] (8)

where pπ is the state transition distribution. Practically, the value of
Qπ can be estimated in different ways. For example, Qπ (s,a) serves
as a critic to guide the updating direction of πθ , which leads to a
class of actor-critic algorithms [28].

3 DEEP RL: TOWARDS MUTUAL
COOPERATION

Algorithm 1 describes our deep multiagent reinforcement learning
approach, which consists of two phases. In the offline phase, we first
seek to generate policies with varying cooperation degrees. Since
the number of policies with different cooperation degrees is infi-
nite, it is computationally infeasible to train all the policies from
scratch. To address this issue, we first train representative policies
using Actor-Critic until convergence (i.e., cooperation and defection

2

s

s

!

AutoEncoder

Figure 1: Cooperation Degree Detection Network

baseline policies) (Lines 3-5) detailed in Section 3.1; second, we
synthesize the full range of policies (Lines 6-7) from the above base-
line policies, which will be detailed in Section 3.2. Another task is
to how to effectively detect the cooperation degree of the opponent.
We divide this task into two steps: we first train a cooperation degree
detection network offline (Lines 8-10), which will be then used for
real-time detection during the online phase, detailed in Section 3.3.
In the online phase, our agent plays against any opponent by recip-
rocating with a policy of a slightly higher cooperation degree than
that of the opponent we detect (Lines 12-17), detailed in Section 3.4.
Intuitively, on one hand, our algorithm is cooperation-oriented and
seeks for mutual cooperation whenever possible; on the other hand,
our algorithm is also robust against selfish exploitation and resorts
to defection strategy to avoid being exploited whenever necessary.

3.1 Train Baseline Policies with Different
Cooperation Degrees

One way of generating policies with different cooperation degrees
is changing the key parameters of the environments. For example,
Leibo et al. [17] investigate the influence of the resource abundance
degree on the policy’s cooperation tendency in sequential social
dilemma games where agents compete for limited resources. It is
found that when both agents employ deep Q-learning algorithms,
more cooperative behaviors can be learned when resources are plen-
tiful and vice versa. We may leverage similar ideas of modifying
game settings to generate policies with different cooperation degrees.
However, this type of approach requires perfectly understanding the
environment, and also may not be feasible when one cannot modify
the underlying game engine.

Another more generalized way of generating policies with differ-
ent cooperation degrees is to modify agents’ reward signals during
learning. Intuitively, agents with the sum of all agents’ immediate
rewards would learn towards cooperation policies to maximize the
expected accumulated social welfare, and agents maximizing only
their individual reward would learn selfish (defecting) policies. For-
mally, for a two-player environment (agent i and j), agent i computes
a weighted target reward r ′i as follows:

r ′i = ri + atti j × r j (9)

where agent i’s attitude atti j reflects the relative importance of agent
j in its perceived reward. By setting atti j and attji to 0 or 1, agents
would maximize their own return or overall return respectively. The

s
⇡c

⇡d

Cooperation Degree Detect

!

⇡c

⇡d

⇡final

Figure 2: The Structure of Deep Reinforcement Learning Ap-
proach Towards Mutual Cooperation

Algorithm 1 The Approach of Deep Multiagent Reinforcement
Learning Towards Mutual Cooperation

1: //offline phase
2: initialize the size Nt , Nд of training and generation policy set,

the number Nd , Ne of training data set and episode, the step
number Nr of each episode

3: for training policy set index t = 1 to Nt do
4: set agents’ attitudes
5: train agents’ policy set Pt using weighted target reward
6: for generation policy set index g = 1 to Nд do
7: use policy set {Pt }t ∈Nt to generate policy set Pд
8: for training data set index d = 1 to Nd do
9: generate training data set Dd as {Pt }t ∈Nt ∪ {Pд }д∈Nд

10: train cooperation degree detection network
11: //online phase
12: initialize aдent ′1s cooperation degree
13: for episode index e = 1 to Ne do
14: for step index r = 1 to Nr do
15: aдent1 and aдent2 take actions and get rewards
16: detect aдent ′2s cooperation degree cdr2 using n-state trajec-

tory and update cdr1 based on cdr2
17: generate a policy with cdr1 using policy generation

greater agent one’s attitude towards agent two is, the higher the
cooperation degree of agent one’s learned policy would be.

Given the modified reward signal, the next question is how agents
learn to effectively converge to the expected behaviors. One natural
way is to resort to IAC or some independent DRL, i.e., equipping
agent i with an individual DQN with reward r ′i . However, the key
element to the success of DQN, experience replay memory, may
prohibit effective learning in multiagent environments [9, 26]. Due
to the nonstationarity problem, data in the replay memory may
no longer reflect the current dynamics during learning, IACs get
confused by obsolete experience and impede the learning process.
A number of methods have been proposed to remedy this issue
[8, 9, 20] and we omit the details which are out of the scope of this
paper.

Since the baseline policy training step is performed offline, an-
other way of improving training is to use JAC by treating both

3

agents as a single learner. Thus both agents share the same under-
lying network that learns the optimal policy over the joint action
space. Note that we use JAC only for the purpose of training base-
line policies offline, and we do not require controlling the policies
that an opponent may use online. In this way, the aforementioned
nonstationarity problem can be avoided. Besides, compared with
IAC, the training efficiency can be improved significantly since the
network parameters are shared across agents in JAC.

In JAC, the weighted target reward is defined as follows:

rtotal =
∑
i ∈N

atti × ri (10)

where atti represents the relative importance of agent i on the overall
reward. The smaller the value of atti , the higher the cooperation
degree of agent i’s learned policy and vice versa. Given the learned
joint policy π joint (a1,a2 |s,att1,att2), agent i can easily obtain its
individual policy πi as πi =

∑
aj , j,i π

joint (a1,a2 |s,att1,att2).
It is computationally prohibitive to train a large number of policies

with different cooperation degrees due to the high training cost of
IAC and JAC, and the infinite policy space. To alleviate this issue,
we propose that only two baseline policies, cooperation policy πc
and defection policy πd , need to be trained. Other policies with
cooperation degree between them can be synthesized efficiently,
detailed in Section 3.2.

3.2 Policy Generation
Given the baseline policies πci and πdi , we synthesize multiple poli-
cies. Each continuous weighting factor wc ∈ [0, 1] corresponds to a
new policy πwc

i defined as follows:

πwc
i = wc × π

c
i + (1 −wc) × π

d
i (11)

The weighting factor wc is defined as policy πwc
i ’s cooperation

degree. The linear combination of two policies has two advantages
— it 1) generates policies with varying cooperation degrees and 2)
ensures low computational cost. Any synthesized policy πwc

i should
be more cooperative than πdi and more defecting than πci . The higher
the value of wc is, the more cooperative the corresponding policy
πwc
i is. It is important to mention that the cooperation degrees of

synthesized policies are ordinal, i.e., the cooperation degree of poli-
cies only reflect their relative cooperation ranking. For example,
considering two synthesized policies π 0.6

i and π 0.3
i , we cannot say

that π 0.6
i is twice as cooperative as π 0.3

i . Our way of synthesizing
new policies can be understood as synthesizing policies over expert
policies [12]. The previous work applies a similar idea to generate
new policies to better respond with different opponents in competi-
tive environments, however, our goal here is to synthesize policies
with varying cooperation degrees in sequential Prisoner’s dilemmas.

3.3 Opponent Cooperation Degree Detection
In classical iterated PD games, a number of techniques have been
proposed to estimate the opponent’s cooperation degree, e.g., count-
ing the cooperation frequency when action can be observed, using a
particle filter or Bayesian approach otherwise [6, 14, 15, 17]. How-
ever, in SPD, the actions are temporally extended, and the oppo-
nent’s information (actions and rewards) cannot be observed directly.

Figure 3: The Fruit Gathering game (left) and the Apple-Pear
game.

0 2000 4000 6000 8000 10000

episode number
0.2

0.4

0.6

0.8

1.0

1.2

ag
en

t′ 1s
re

w
ar

d

0 2000 4000 6000 8000 10000

episode number
0.2

0.4

0.6

0.8

1.0

1.2

ag
en

t′ 2s
re

w
ar

d

att1 0.1, att2 0.9
att1 0.2, att2 0.8
att1 0.3, att2 0.7
att1 0.4, att2 0.6
att1 0.5, att2 0.5

att1 0.6, att2 0.4
att1 0.7, att2 0.3
att1 0.8, att2 0.2
att1 0.9, att2 0.1

Figure 4: Agents’ average rewards under policies trained with
different cooperation attitudes.

Thus previous works cannot be directly applied. We need a way
of accurately predicting the opponents’ cooperation degree from
the observed sequence of moves in a qualitative manner. In SPD,
given the sequential observations (time-series data), we propose an
LSTM-based cooperation degree detection network. We transform it
into a supervised learning problem: given a sequence of moves of
an opponent, our task is to detect the cooperation degree (label) of
this opponent. We propose a recurrent neural network, which com-
bines an autoencoder and a recurrent classifier, as shown in Figure 1.
Combining an autoencoder with a recurrent classifier brings two
major benefits here. It ensures the effective feature extraction of the
observed moves to accelerate the training speed of the classifier and
reduce fluctuation.

The network is trained on experiences collected by agents. Both
agents i and j interact with the environment starting with initialized
policies πi ∈ {πci ,π

d
i } and πj ∈ Πj , where πci and πdi are baseline

policies for agent i, Πj is the learned policy set of its opponent j.
Then we can get a set of trajectories under the joint policy (πi ,πj).
For each trajectory ⟨s1, s2, . . . , sd ⟩, its label is the cooperation degree
of agent i’s policy. If πi is πci , the label is set 1 and 0 otherwise. The
network is trained to minimize the weighted cross entropy.

3.4 Play Against Different Opponents
Once we have detected the cooperation degree of the opponent, the
final question arises as to how an agent should select proper policies
to play against that opponent. Unlike the self-interested approach,
we seek a solution that can allow agents to achieve cooperation while
avoiding being exploited.

At each time step t , agent i uses its previous n-step sequence of
observations as the input of the detection network, and obtain the
detected cooperation degree cdtj . However, the one-shot detection
of the opponent’s cooperation degree might be misleading due to
either the detection error of our classifier or the stochastic behav-
iors of the opponent. Thus this may lead to high variance of our
detection outcome and our response policy thereafter. To reduce the
variance, agent i uses the exponential smoothing to update its current

4

agent ′
1s cooperation degree

ag
en

t′ 2s
co

op
er
at
io
n
de

gr
ee

agent ′
1s reward

0.67

0.9233

agent ′
1s cooperation degree

ag
en

t′ 2s
co

op
er
at
io
n
de

gr
ee

agent ′
2s reward

0.6659

0.9667

agent ′
1s cooperation degree

ag
en

t′ 2s
co

op
er
at
io
n
de

gr
ee

total reward
1.4856

1.7391

(a) The Apple-Pear game

agent ′
1s cooperation degree

ag
en

t′ 2s
co

op
er
at
io
n
de

gr
ee

agent ′
1s reward

35.5

118.1

agent ′
1s cooperation degree

ag
en

t′ 2s
co

op
er
at
io
n
de

gr
ee

agent ′
2s reward

36.3

118.2

agent ′
1s cooperation degree

ag
en

t′ 2s
co

op
er
at
io
n
de

gr
ee

total reward
151.1

157.0

(b) The Fruit Gathering game

Figure 5: Average and total rewards under different cooperation degrees. The cooperation degrees of aдent1 and aдent2 increase from
left to right and from bottom to top respectively. Each cell corresponds the rewards of different policy pairs.

cooperation degree estimation of its opponent j as follows:

cdti = (1 − α) × cdt−1
i + α × cdtj (12)

where cdt−1
i is agent i’s cooperation degree in the last time step,

and α is the cooperation degree changing factor.
Finally, agent i sets its own cooperation degree equal to cdti plus

its reciprocation level, and then synthesizes a new policy with the
updated cooperation degree following Equation (11) as its next-
step strategy. Note that the reciprocation level can be quite low
and still avoid significant loss while, produce cooperation when the
opponent reciprocates in the same way. Also, our overall approach
is general and any existing multiagent strategy selection approaches
can be applied here. The idea here, adjusting policy by detecting
the change of the opponent’s cooperation degree, is similar with the
work of Foerster et al. [10]. They propose that the agent considers
the policy change of its opponent as the second order term of its
policy gradient, and can learn towards Tit-for-Tat policy in coin
game under self-play. However, they assume that both policies of
the agent and its opponent have minor changes, and only focus
on the process of learning together with opponents. Thus, agents
cannot face opponents with fast-changing policies. In contrast, we
use policy generation rather than policy gradient, and can allow
agents to quickly adapt to fast-changing policies to ensure self-
interests and social welfare of agents.

4 SIMULATION AND RESULTS
4.1 SPD Game Descriptions
In this section, we adopt the Fruit Gathering game [17] to evaluate
the effectiveness of our approach and propose another game Apple-
Pear, which also satisfies real world social dilemma conditions we

mentioned before. Each game involves two agents (in blue and red)
who receive the raw RGB screenshots as observations. The task of
an agent in the Fruit Gathering game is to collect as many apples,
represented by green pixels, as possible (Figure 3 (left)). An agent’s
action set is: step forward, step backward, step left, step right, rotate
left, rotate right, use beam, and stand still. The agent obtains the
corresponding fruit when it steps on the same square as the fruit is
located. When an agent collects an apple, it will receive a reward
of 1. The apple will be removed from the environment and respawn
after 40 frames. Each agent can also emit a beam in a straight line
along its current orientation. An agent is removed from the map for
20 frames if it is hit by the beam twice. Intuitively, a more defecting
policy is one which frequently tags the rival agent.

For the Apple-Pear game, there is a red apple and a green pear
(Figure 3 (right)). The blue agent prefers apple while the red agent
prefers pear. Each agent has four actions: step right, step left, step
backward, step forward, and each step of moving incurs a cost of
0.01. The fruit is collected when the agent enters its square. When
the blue (red) agent collects an apple (pear) individually, it receives
a higher reward of 1. When agents collect their less favored fruit,
they receive a lower reward of 0.5. One exception is that they both
receive a half of their corresponding rewards when they share a pear
or an apple. In this game, a more defecting policy tends to collect
fruits regardless of the type. In Section 4.4, we observe that both
games satisfy the definition of SPD games in Section 2.3 by using
policies with different cooperation degrees to play with each other.

4.2 Network Architecture and Parameter Settings
In both games, our network architectures for training the baseline
policies follow standard AC networks, except that we allow both

5

0.00 0.25 0.50 0.75 1.00
agent ′

2s true
cooperation degree

0.25

0.50

0.75

ag
en

t′ 2s
de

te
ct
ed

co
op

er
at
io
n
de

gr
ee

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9
1.0

(a) Apple-Pear

0.00 0.25 0.50 0.75 1.00
agent ′

2s true
cooperation degree

0.25

0.50

0.75

ag
en

t′ 2s
de

te
ct
ed

co
op

er
at
io
n
de

gr
ee

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9
1.0

(b) Fruit Gathering

0.00 0.25 0.50 0.75 1.00
agent ′

2s true
cooperation degree

0.00

0.25

0.50

0.75

1.00

ag
en

t′ 2s
de

te
ct
ed

co
op

er
at
io
n
de

gr
ee 1

(c) Fruit Gathering (cd1 = 1)

Figure 6: The detection results for aдent2 under different cooperation degrees of aдent1: (a) Apple-Pear game; (b) Fruit Gathering
game; (c)aдent1’s cooperation degree as 1 in Fruit Gathering game

0 200 400 600 800 1000
episode

0.0

0.2

0.4

0.6

0.8

1.0

ag
en

ts
′ c

oo
pe

ra
tio

n
de

gr
ee

agent1
agent2

0 200 400 600 800 1000
episode

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ag
en

ts
′ r

ew
ar

d

agent1
agent2

Figure 7: Self-play in Apple-Pear with agents using our strat-
egy.

actor and critic to share the same underlying network to reduce the
parameter space. For the underlying network, the first hidden layer
convolves 32 filters of 8 × 8 with stride 4 with the input image and
applies a rectifier nonlinearity. The second hidden layer convolves 64
filters of 4×4 with stride 2, again followed by a rectifier nonlinearity.
This is followed by a third convolutional layer that convolves 64
filters of 3 × 3 with stride 1 followed by a rectifier. For the actor, on
the basis of sharing network, the next layer includes 128 units with
rectifier nonlinearity, and the final softmax layer has as many units
as the number of actions. The critic is similar to the actor, but with
only one scalar output.

The recurrent cooperation degree detection network is shown
in Figure 1. The autoencoder and the detection network share the
same underlying network. The first hidden layer convolves 10 filters
of 3 × 3 with stride 2 with the input image and applies a rectifier
nonlinearity. The second hidden layer is the same as the first one
and the third hidden layer convolves 10 filters of 3 × 3 with stride 3
and applies a rectifier nonlinearity. The autoencoder is followed by
a fourth hidden layer that deconvolves 10 filters of 3 × 3 with stride
3 and applies a sigmoid and its output shape is 21 × 21 × 10. The
next layer deconvolves 10 filters of 3 × 3 with stride 2 and applies
a sigmoid and the output shape is 42 × 42 × 10. The final layer
deconvolves 10 filters of 3 × 3 with stride 2 and applies a sigmoid
and the output shape is 84 × 84 × 3. Cooperation degree detection
network is followed by two LSTM layers of 256 units. The final
layer is an output node.

For the Apple-Pear game, each episode has at most 100 steps. The
exploration rate is annealed linearly from 1 to 0.1 over the first 20000
steps. The weight parameters are updated by soft target updates [18]
every 4 steps to avoid the update fluctuation as follows:

θ ′ ← 0.05θ + 0.95θ ′ (13)

where θ is the parameter of the policy network and θ ′ is the parameter
of the target network. The learning rate is set to 0.0001 and memory
is set to 25000. The batch size is 128. For the loss function in the
cooperation degree detection network, we set w1 and w2 as 1 and
2. When agents play with different opponents online, we assign the
number of states visited to the length n of the state sequence which is
the input of cooperation detection network. The cooperation degree
changing factor α is set to 1.

The Fruit Gathering game uses the same detection network ar-
chitecture. The actor-critic uses independent policy networks. Each
episode has at most 100 steps during training. The exploration rate
and the memory are the same as the Apple-Pear game. The weight
parameters are updates the same as the Apple-Pear game:

θ ′ ← 0.001θ + 0.999θ ′ (14)

When agents play with different opponents online, we set state
sequence length n as 50 and the changing factor α is set to 0.02.

4.3 Effect of Baseline Policy Generation
For the Apple-Pear game, the baseline policies are trained using the
JAC scheme. We set the attitude in Equation (10) between 0.1 and 0.9
to train baseline policies. The reason that attitudes are not set 0 and 1
is that these settings will cause an agent with meaningless policy, e.g,
the agent whose attitude equals 0 makes no influence to total reward
in Equation (10) and hence will always avoid collecting fruit. This
would, in turn, affect the learned policy quality of the other agent
(i.e., lazy agent problem [24]). Figure 4 shows the average rewards of
agents under policies trained with different weighted target rewards.
The individual rewards of each agent increase gradually as its attitude
increases and the other agent’s attitude decreases, as seen in the
results. We also evaluate the IAC scheme and do experiments in the
Fruit Gathering game. Results are similar and are omitted for space.

4.4 Effect of Policy Generation
For the Apple-Pear game, the baseline cooperation policies πc1 and
πc2 are trained under the setting of {att1 = att2 = 0.5}. The base-
line defection policies πd1 and πd2 has {att1 = 0.75,att2 = 0.25}
and {att1 = 0.25,att2 = 0.75} respectively. Then we generate the
policy set of aдent1 Π1 = {π = w1 × πc1 + (1 − w1) × πd1 |w1 =
0.0, 0.1, . . . , 1.0} and the policy set of aдent2 Π2 in the same way.
After that, two policies π1 and π2 are sampled from Π1 and Π2 and
matched against each other in the games for 200,000 episodes. The

6

0 1000 2000 3000 4000 5000
episode

0.00

0.25

0.50

0.75

1.00

de
te

ct
io

n
va

lu
e

0 2000 4000
episode

0.4

0.5

0.6

0.7

0.8

0.9

ag
en

t′ 1s
re

w
ar

d

0 2000 4000
episode

0.4

0.5

0.6

0.7

0.8

0.9

ag
en

t′ 2s
re

w
ar

d

agent1 keep defective policy
agent1 keep cooperate policy
agent1 our approach

0 1000 2000 3000 4000 5000
episode

1.0

1.2

1.4

1.6

so
ci

al
w

el
fa

re

(a) policy varies between π c and πd every 150 episodes

0 1000 2000 3000 4000 5000
episode

0.00

0.25

0.50

0.75

1.00

de
te

ct
io

n
va

lu
e

0 2000 4000
episode

0.4

0.5

0.6

0.7

0.8

0.9

ag
en

t′ 1s
re

w
ar

d

0 2000 4000
episode

0.4

0.5

0.6

0.7

0.8

0.9

ag
en

t′ 2s
re

w
ar

d

agent1 keep defective policy
agent1 keep cooperate policy
agent1 our approach

0 1000 2000 3000 4000 5000
episode

1.0

1.2

1.4

1.6

so
ci

al
w

el
fa

re

(b) policy varies between π c and πd every 200 episodes

Figure 8: Apple-Pear game: aдent2’s policy varies between πc and πd every 150 and 200 episodes. The average rewards of the aдent1
are higher when using our approach than using πc , which means our approach can avoid being exploited by defective opponents. The
social welfare is higher than using πd , indicating that our approach can seek for cooperation against cooperative ones.

0 2500 5000 7500 10000
step

0.00

0.25

0.50

0.75

1.00

de
te

ct
io

n
va

lu
e

0 2500 5000 7500 10000
step

0

20

40

60

80

100

ag
en

t′ 1s
re

w
ar

d

0 2000 4000 6000 8000 10000
step

0

20

40

60

80

ag
en

t′ 2s
re

w
ar

d

agent1 keep defective policy
agent1 keep cooperate policy
agent1 our approach

0 2500 5000 7500 10000
step

130

135

140

145

150

so
ci

al
w

el
fa

re
(a) aдent2’s policy varies between π c and πd every 200 steps

0 2500 5000 7500 10000
step

0.25

0.00

0.25

0.50

0.75

1.00

de
te

ct
io

n
va

lu
e

0 2500 5000 7500 10000
step

0

20

40

60

80

100

ag
en

t′ 1s
re

w
ar

d

0 2000 4000 6000 8000 10000
step

0

20

40

60

80

ag
en

t′ 2s
re

w
ar

d

agent1 keep defective policy
agent1 keep cooperate policy
agent1 our approach

0 2500 5000 7500 10000
step

130

135

140

145

150

so
ci

al
w

el
fa

re

(b) aдent2’s policy varies between π c and πd every 350 steps

Figure 9: Fruit Gathering game: aдent2’s policy varies between πc and πd every 200 and 350 steps. Similar phenomenon can be
observed as in Figure 8.

average rewards are assigned to individual cells of different attitude
pairs, in which π1 and π2 correspond to policies with varying coop-
eration degrees w1 and w2 for agent 1 and 2 respectively (Figure 5
(a)). We can observe that when both of their cooperation degrees
increase, which means they are more cooperative, their total rewards
increase, and vice versa. Besides, given a fixed cooperation degree
of aдent1, aдent2’s reward is increased as its cooperation degree
decreases, and vice versa. Similar patterns can be observed for agent

1 as well. Therefore, it indicates that we can successfully synthesize
policies with a continuous range of cooperation degrees. It also con-
firms that the Apple-Pear game can be seen as an SPD following
the definition in Section 2.3. Moreover, similar results for the Fruit
Gathering game can be observed from Figure 5 (b).

7

4.5 Effect of Cooperation Degree Detection
This section evaluates the detection power of the cooperation degree
detection network. For the Fruit Gathering game , we collect 4000
data for each state sequence lengths {40, 50, 60, 70}, which includes
2000 data labeled as 1 and 0, respectively. The network is trained
to minimize the weighted cross entropy and the cooperation degree
detection accuracy is high (Figure 6 (a)). We can observe that the
detection results are almost linear with the true values. Figure 6 (c)
shows the detection results of aдent2 when aдent1’s policy is fixed
with cooperation degree 1. We can see that the true cooperation
degree of aдent2 can be easily obtained by fitting a linear curve
between the predicted and true values. Thus for each policy of aдent1
in Π1, we can fit a linear function to evaluate the true cooperation
degrees of aдent2. During online learning, when aдent1 uses policies
of varying cooperation degrees, it firstly chooses the function whose
corresponding policy is closest to the used policy, and then computes
the cooperation degree of aдent2.

Note that the opponent may take polices with cooperation degree
between 0 and 1 whereas its cooperation degree policy is fixed as 0
or 1 during training which will be introduced in Section 4.6. This
shows that our detection network can generalize to detect policies
with varying cooperation degrees. Even for previously unseen poli-
cies which are not generated by pic and pid , they can be mapped
to proper cooperation degrees. For example, a defection policy is
always to emit a beam whereas the emitting frequency varies for
different cooperation degrees. Our detection network can learn afore-
mentioned key patterns of opponents’ behaviors and thus accurately
predict the different levels of cooperative degrees.

4.6 Performance under Self-Play
Next, we evaluate the learning performance of our approach under
self-play. Each agent starts with cooperation or defection policy.
Agents converge to full cooperation for all initial cases. Due to
space limitation, we only present the results in the case when both
agents start with a defection policy, which is the most challenging
one (Figure 7) . It is more likely for them to model each other as
defecting and thus both play defect thereafter. Our approach enables
agents to detect the cooperation tendency of their opponents from
sequential actions and eventually converge to cooperation.

4.7 Playing with Opponents with Changing
Strategies

Now, we evaluate the performance against opponents, switching
between cooperation and defection. In the Fruit Gathering game we
vary it in the range of [100, 500] at the interval of 25. Due to space
limitation , only one set of results for the game are shown in Figure
8 and Figure 9. Similar results can be observed for other values
of Nchanдe . We can observe that the average rewards of aдent1
are higher than its rewards using πc . And the social welfare (the
total rewards) is higher than that using πd . This indicates that we
can prevent agents from being exploited by defecting opponents
and also seek mutual cooperation. By comparing the results for
different values of Nchanдe , we find that the detection accuracy
decreases when the opponent changes its policy quickly. Since the
agent requires observing several episodes to detect the cooperation
degree of the opponent, when the agent realizes its opponent changes

the policy and adjusts its policy, the opponent may change the policy
again. This problem becomes less severe when T is comparatively
large.

5 CONCLUSIONS
In this paper, we investigate multiagent learning problem in large-
scale PD games by leveraging the recent advance of DRL. A deep
multiagent RL approach is proposed towards mutual cooperation
in SPD games to support adaptive end-to-end learning. As a step
towards solving multiagent learning problem in large-scale environ-
ments, we believe there are many interesting questions remaining for
future work. One worthwhile direction is how to generalize our ap-
proach to other classes of large-scale multiagent games. Generalized
policy detection and reuse techniques should be proposed, e.g., by
extending existing approaches in traditional reinforcement learning
contexts [13–15].

ACKNOWLEDGMENTS
The work is supported by the National Natural Science Foundation
of China under Grant No.: 61702362, and Special Program of Ar-
tificial Intelligence of Tianjin Municipal Science and Technology
Commission (No.:17ZXRGGX00150), and Special Program of Tal-
ents Development for High Level Innovation and Entrepreneurship
Team in Tianjin.

REFERENCES
[1] R. Axelrod. The evolution of cooperation, 1984.
[2] D. Banerjee and S. Sen. Reaching pareto-optimality in prisoner’s dilemma us-

ing conditional joint action learning. Autonomous Agents and Multi-Agent Systems,
15(1):91–108, 2007.

[3] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, And Cybernetics-Part C:
Applications and Reviews, 38 (2), 2008, 2008.

[4] J. W. Crandall and M. A. Goodrich. Learning to teach and follow in repeated games.
In AAAI workshop on Multiagent Learning, 2005.

[5] J. W. Crandall. Just add pepper: extending learning algorithms for repeated matrix
games to repeated markov games. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1, pages 399–406, 2012.

[6] S. Damer and M. L. Gini. Achieving cooperation in a minimally constrained
environment. In AAAI, pages 57–62, 2008.

[7] M. Elidrisi, N. Johnson, M. Gini, and J. Crandall. Fast adaptive learning in repeated
stochastic games by game abstraction. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems, pages 1141–1148, 2014.

[8] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual
multi-agent policy gradients. arXiv preprint arXiv:1705.08926, 2017.

[9] J. Foerster, N. Nardelli, G. Farquhar, P. Torr, P. Kohli, S. Whiteson, et al. Stabil-
ising experience replay for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1702.08887, 2017.

[10] Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter
Abbeel, and Igor Mordatch. Learning with opponent-learning awareness. arXiv
preprint arXiv:1709.04326, 2017.

[11] J. Hao and H. Leung. Introducing decision entrustment mechanism into repeated
bilateral agent interactions to achieve social optimality. Autonomous Agents and
Multi-Agent Systems, 29(4):658–682, 2015.

[12] H. He, J. Boyd-Graber, K. Kwok, and H. Daumé III. Opponent modeling in deep
reinforcement learning. In International Conference on Machine Learning, pages
1804–1813, 2016.

[13] P. Hernandez-Leal and M. Kaisers. Towards a fast detection of opponents in
repeated stochastic games. In The Workshop on Transfer in Reinforcement Learning,
2017.

[14] P. Hernandez-Leal, B. Rosman, M. E. Taylor, L. E. Sucar, and E. M. D. Cote. A
bayesian approach for learning and tracking switching, non-stationary opponents. In
Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent
Systems, pages 1315–1316, 2016.

[15] P. Hernandez-Leal, M. E. Taylor, B. Rosman, L. E. Sucar, and E. M. D. Cote.
Identifying and tracking switching, non-stationary opponents: a bayesian approach. In
Multiagent Interaction without Prior Coordination Workshop at AAAI, 2016.

8

[16] J. Hu and M. P. Wellman. Nash q-learning for general-sum stochastic games.
Journal of machine learning research, 4(Nov):1039–1069, 2003.

[17] J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel. Multi-agent
reinforcement learning in sequential social dilemmas. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, pages 464–473, 2017.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[19] M. L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Proceedings of the eleventh international conference on machine learning,
volume 157, pages 157–163, 1994.

[20] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. arXiv preprint
arXiv:1706.02275, 2017.

[21] P. Mathieu and J. Delahaye. New winning strategies for the iterated prisoner’s
dilemma. In Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, pages 1665–1666, 2015.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[23] M. Nowak and K. Sigmund. A strategy of win-stay, lose-shift that outperforms
tit-for-tat in the prisoner’s dilemma game. Nature, 364(6432):56–58, 1993.

[24] J. Perolat, J. Z. Leibo, V. Zambaldi, C. Beattie, K. Tuyls, and T. Graepel. A
multi-agent reinforcement learning model of common-pool resource appropriation.
arXiv preprint arXiv:1707.06600, 2017.

[25] P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8(3):345–383, 2000.

[26] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg,
M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, et al. Value-decomposition networks
for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

[27] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in
neural information processing systems, pages 1057–1063, 2000.

[28] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas. Sample efficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224, 2016.

[29] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

9

	Abstract
	1 Introduction
	2 Background
	2.1 Matrix Games and the Prisoner's Dilemma
	2.2 Markov Game (Stochastic Game)
	2.3 Definition of Sequential Prisoner's Dilemma
	2.4 Deep Reinforcement Learning

	3 Deep RL: Towards Mutual Cooperation
	3.1 Train Baseline Policies with Different Cooperation Degrees
	3.2 Policy Generation
	3.3 Opponent Cooperation Degree Detection
	3.4 Play Against Different Opponents

	4 Simulation and Results
	4.1 SPD Game Descriptions
	4.2 Network Architecture and Parameter Settings
	4.3 Effect of Baseline Policy Generation
	4.4 Effect of Policy Generation
	4.5 Effect of Cooperation Degree Detection
	4.6 Performance under Self-Play
	4.7 Playing with Opponents with Changing Strategies

	5 Conclusions
	Acknowledgments
	References

