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ABSTRACT
We study a classification problem where each feature can be ac-
quired for a cost and the goal is to optimize the trade-off between
classification precision and the total feature cost. We frame the prob-
lem as a sequential decision-making problem, where we classify
one sample in each episode. At each step, an agent can use values
of acquired features to decide whether to purchase another one or
whether to classify the sample. We use Double Deep Q-learning, a
standard reinforcement learning technique, to find a classification
policy.We show that this generic approach outperformsAdapt-Gbrt,
currently the best-performing algorithm developed specifically for
classification with costly features.
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1 INTRODUCTION
Classification with costly features (CwCF) is a problem where an
algorithm has to classify a sample, but can only reveal its features at
a defined cost. Each sample is treated independently, and for each
sample the algorithm sequentially selects features, while it can
base its decision which one to acquire on values already revealed.
Inherently, for different samples, a different subset of features can
be selected. The algorithm has to make a trade-off between the
classification precision and the total incurred cost, and the goal is
to reach the highest precision at the lowest total cost.

CwCF has been studied for over 25 years [16]. It is a practical
problem with many real use cases. Let’s name a network intrusion
detection, in which an analyst examines network traffic, queries
different expensive data sources, and makes a decision whether
the current sample is malicious or benign. Another example is a
medical diagnosis, where a doctor canmake a sequence of expensive
examinations to decide the correct treatment or a robot that can
use a set of sensors to localize itself, but each measurement depletes
its battery a little.

CwCF has been addressed by linear programming [21], trees
of classifiers [7, 23], or recurrent neural networks with specific
structure [1]. Most recent line of work relays on random forests
with pruning [14, 15], and gradient boosted trees [13].

In this paper, we show that even the most recent of these problem
specific methods can be outperformed by generic Reinforcement
Learning (RL) algorithms. We view classification of each sample as
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an episode of a reinforcement learning problem, where an agent
sequentially decides whether to acquire another feature and which,
or whether to already classify the sample. At each step, the agent
can base its decision on the values of the features acquired so far.
For the actions requesting a feature the agent receives a negative
reward, equal to the feature cost. For the classification actions, the
reward is based on the true class of the sample.

We build upon prior work [2] that uses RL algorithm Q-learning
for CwCF. It uses linear regression to approximate the Q function,
which does not allow to reach the state-of-the-art performance.
We replace the linear regression with deep learning and base our
method on Deep Q-network [11] (DQN) with Double Q-learning
[3]. Although the DQN algorithm can be extended with multiple
techniques [4], we show that even basic Double DQN algorithm can
outperform the state-of-the-art techniques, that have been specif-
ically tailored to this domain. This brings the immediate benefit
of improved performance in the task of classification with costly
features, but also allows any future advancements of Deep Rein-
forcement Learning to be readily applied also in CwCF. Further-
more, using RL for CwCF enables continual adaptation to changes
in non-stationary environments, commonly present in real-world
problems.

The main contribution of this paper is the empirical evaluation
showing that solving the problem of classification with costly fea-
tures using deep reinforcement learning outperforms the current
state-of-the-art developed specifically for this problem. On three
data sets, DQN [11] achieves a substantially higher precision than
Adapt-Gbrt [13] and BudgetPrune [15] with the same average cost
for acquired features. An additional contribution is showing that
DQN performs well in problems, which are substantially different
from those where DQN was developed and evaluated (primarily on
Atari games). Specifically, CwCF is stochastic, with a large num-
ber of actions (hundreds to thousands) and without an apparent
structure that could be leveraged with convolutions.

2 METHOD
We view the problem as a sequential decision-making problem,
where at each step an agent selects a feature to view or makes a
class prediction. We use standard reinforcement learning setting,
where the agent explores its environment through actions and
observes rewards and states. We represent this environment as
a partially observable Markov decision process (POMDP), where
each episode corresponds to a classification of one sample from a
dataset. This POMDP is defined by its state space S̃, set of actions
A, reward function r and transition function t .

Let (x ,y) ∈ D be a sample drawn from a data distribution D.
Vector x ∈ X ⊆ Rn contains feature values, where x (i ) is a value
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of feature fi ∈ F = { f1, ..., fn }, n is the number of features, and
y ∈ Y is a class. Let c : F → R be a function mapping a feature f
into its real-valued cost c ( f ).

States s̃ = (x ,y, F̄ ) ∈ S̃ = X × Y × ℘(F ), where ℘(F ) is a
power set of F , represents a sample (x ,y) and currently selected
set of features F̄ . The agent is given only an observed state s ,
which consist of only the selected parts of x , without the label. The
observed state s ∈ S is a set of pairs (x (i ) , fi ), for every selected
feature fi : s = {(x (i ) , fi ) | ∀fi ∈ F̄ }.

Action a ∈ A = Ac ∪Af is one of the possible classification ac-
tions Ac = Y , or feature selecting actions Af = F . Classification
actionsAc terminate the episode and the agent receives a reward of
0 in case of correct classification, or −1 otherwise. Feature selecting
actionsAf reveal a corresponding value x (i ) and the agent receives
a negative reward of −λc ( fi ). The set of currently available feature
selecting actions is limited to features not yet selected.

Reward function r : S̃ × A → R is defined as

r ((x ,y, F̄ ),a) =




−λc ( fi ) if a ∈ Af , a = fi

0 if a ∈ Ac and a = y
−1 if a ∈ Ac and a , y

where λ ∈ R+ is a feature cost factor. By altering its value, we
can make the trade-off between precision and average cost. Higher
λ forces the agent to prefer lower cost and shorter episodes over
precision and vice versa.

The initial state does not contain any disclosed features, s̃0 =
(x ,y, ∅), and is drawn from the data distribution D. The environ-
ment is deterministic and the transition function t : S̃×A → S̃∪T ,
where T is the terminal state, is:

t ((x ,y, F̄ ),a) =



T if a ∈ Ac

(x ,y, F̄ ∪ a) if a ∈ Af

These properties make the environment inherently episodic, with
a maximal length of an episode of |F | + 1.

The goal is to find a policy π that sequentially selects features
from F and eventually decides a class from Y , while maximizing
the expected total reward.

Because in any observed state s , some feature values from the
original state s̃ could be missing, multiple different states s̃ can map
to the same observed state s . The agent working only with observed
states s therefore cannot predict which state s̃ it is in. As a result, the
agent experiences stochastic transitions and rewards, although the
defined environment is deterministic after the initial choice of the
sample. In the following sections, we mainly use the agent’s point of
view and work with the observed states and expectations over their
probabilities. For this reason, it is useful to overload the notation
of transition function to also work with observed states. Let t (s,a)
give transition probabilities for all next observed states s ′, when
the action a is taken in the observed state s : t : S×A → ∆(S∪T ).
Similarly, let the reward function r (s,a) return the expected reward
when taking the action a from the observed state s .

2.1 Deep Q-learning
In this work we use Double Deep Q-learning [11, 19] with experi-
ence replay and soft-target network [9] to find the optimal policy.
This section briefly describes these techniques.

Deep Q-learning is a method that estimates a state-action value
function Q with a neural network. Function Qπ (s,a) expresses the
expected discounted reward starting at observed state s , performing
the action a and following policy π afterwards. It is often written
in a recursive form:

Qπ (s,a) = r (s,a) + E
s ′∼t (s,a)

[γQπ (s ′,π (s ′))]

Note that r (s,a) is already an expectation over all possible rewards.
Action-state value of the terminal state is zero, Q (T , ·) = 0.

Discount factor γ controls the importance of future rewards.
It is useful either in non-episodic domains or when function ap-
proximation is used [? ]. Although our environment is guaranteed
to terminate, the discount factor can help during learning and is
preserved in our algorithm as a parameter.

We are interested in the optimal functionQ∗, yielded by a greedy
policy π∗ (s ) = argmaxa Q∗ (s,a):

Q∗ (s,a) = r (s,a) + E
s ′∼t (s,a)

[γ max
a′

Q∗ (s ′,a′)] (1)

In a low dimensional and finite state space, the Q function can be
precisely found by dynamic programming. However, the precise
solution is not feasible in case of a high-dimensional or continuous
state space. To overcome this issue, approximation with neural
networks is often employed, leading to Deep Q-Learning [11].

Inspired with dynamic programming, a neural network θ ap-
proximates a function Qθ by minimizing MSE (mean squared er-
ror) between the both sides of eq. (1), for transitions (s,a, r , s ′)
empirically experienced by an agent following a greedy policy
πθ (s ) = argmaxa Qθ (s,a). In these transitions, s and a denote
current state and taken action, r is experienced reward that in ex-
pectation should converge to r (s,a), and s ′ is the following state,
s ′ ∼ t (s,a). To put it more formally, we are looking for parame-
ters θ by iteratively minimizing the loss function ℓθ , for a batch of
transitions B:

ℓθ (B) =
1
|B|

∑
(s,a,r,s ′)∈B

(q(r , s ′) −Qθ (s,a))2 (2)

where q is the target estimate of the Q function, and it is constant
w.r.t. parameters θ in the optimization step.

q(r , s ′) = r + γ max
a′

Qθ (s ′,a′)

As the error decreases, the approximated function Qθ converges to
Q∗. However, in practice, this method proved to be unstable [11],
and several techniques exist to stabilize it [4]. In this work, we
implement Experience replay, Double Q-learning and soft-target
network, as they are well established in the RL community and
sufficiently demonstrate that our algorithm outperforms the state-
of-the-art algorithms.

Experience replay allows for efficient usage of acquired tran-
sitions, which are often expensive to get. Also, it overcomes issues
induced by online learning, where transitions come in a highly
correlated sequence. In Experience replay, a circular buffer is used
to store recent transitions and in each step a number of them are
sampled to form a batch for optimization. These samples are less
correlated, compared to online learning, and can be replayed multi-
ple times.
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Target network is a technique that decouples the current net-
work values from its update targets. If the target values are gener-
ated from the network θ itself, it induces an unwanted feedback and
causes oscillations and instability. With target network, another
network ϕ is used, parallel to the network θ , and its Qϕ values are
used in the q formula:

q(r , s ′) = r + γ max
a′

Qϕ (s ′,a′)

Parameters ϕ should reflect θ with some delay. Either the parame-
ters ϕ are set to θ after a number of optimization steps [11], or it
slowly follows θ , as the computation continues: ϕ := (1 − ρ)ϕ + ρθ .
Number ρ is a target network factor, leading to soft-target network
[9], which we use in this work.

Double Q-learning [3, 19] is a technique to reduce maximiza-
tion bias induced by maximum in the formula for q. It builds upon
the target network technique and combines the two estimates Qθ

andQϕ . Here, the maximizing action is taken fromQθ , but its value
from the target network Qϕ :

q(r , s ′) = r + γQϕ (s ′, argmax
a′

Qθ (s ′,a′)) (3)

Further, we use ϵ-greedy policy to enforce exploration. This policy
behaves greedily most of the time, but picks a random action with
probability ϵ . The parameter ϵ is linearly decreased over time. The
exact parameters used in the implementation are summarized in
Table A.1 in the appendix.

2.2 Algorithm
We implement an environment according to the defined POMDP,
where each episode corresponds to one randomly drawn sample
(x ,y) from a training dataset, that defines it’s initial state s̃0. At any
time, a state is in the form of s̃ = (x ,y, F̄ ), from which an observed
state s = {(x (i ) , fi ) | ∀fi ∈ F̄ } is created. Neural networks accept
only numeric input and so the observed state s is mapped into a
tuple (x̄ ,m). Vector x̄ ∈ Rn is a masked vector of the original x .
It contains values of x which have been acquired and zeros for
unknown values:

x̄ (i ) =



x (i ) if fi ∈ F̄
0 otherwise

Maskm ∈ {0, 1}n is a vector denoting whether a specific feature has
been acquired, and it contains 1 at a position of acquired feature,
or 0:

m(i ) =



1 if fi ∈ F̄
0 otherwise

The combination of x̄ andm ensures that the network can differen-
tiate between a feature not present and observed value of zero.

We use Double DQN agent with a soft-target network to find
an approximation of the optimal Q∗ function and use the greedy
policy to evaluate it on a test dataset.

The neural network architecture follows that of [11] – its param-
eters are shared for all actions, the network accepts an observed
state and outputs Q values for all actions. It consists of an input
layer accepting a state, three hidden fully connected layers with
RELU activation and a linear output layer with one output per
action.

Algorithm 1 Training
Randomly initialize parameters θ and ϕ
Initialize environments E with (x ,y, ∅) ∈ (X,Y, ℘(F ))
Initialize replay bufferM with a random agent
while not converged do

for all e ∈ E do
Simulate one step with ϵ-greedy policy πθ :

a = πθ (s ); s ′, r = step(e,a)
Add transition (s,a, r , s ′) into circular bufferM

end for
Sample a random batch B fromM
for all (si ,ai , ri , s ′i ) ∈ B do

Compute target qi :

qi =



ri if s ′i = T

ri + γQ
ϕ (s ′i , argmax

a′
Qθ (s ′i ,a

′)) otherwise

Clip qi into [−1, 0]
end for
Perform one step of gradient descent on ℓθ w.r.t. θ :

ℓθ (B) =

|B |∑
i=1

(qi −Q
θ (si ,ai ))

2

Update parameters ϕ := (1 − ρ)ϕ + ρθ
end while

Algorithm 2 Environment simulation
Operator ⊙ marks the element-wise multiplication.
function Step(e ∈ E, a ∈ A)

if a ∈ Ac then

r =

{0 if a = e .y

−1 if a , e .y
Reset e with a new sample (x ,y, ∅) from a dataset
Return (T , r )

else if a ∈ Af then
Add a to set of selected features: e .F̄ = e .F̄ ∪ a
Create maskm(i ) = 1 if fi ∈ F̄ and 0 otherwise
Return ((e .x ⊙m,m),−λc (a))

end if
end function

We normalize each feature in the dataset with its mean and stan-
dard deviation. A value of zero is imputed in place of unknown fea-
ture value because it corresponds to an average in a zero-centered
dataset.

Mainly for performance reasons we simulate 1000 parallel in-
dependent environments at once. Compared to [11] we have full
control of the environment, and this enables an efficient imple-
mentation. In each iteration, we simulate one step in all the envi-
ronments, generating 1000 transitions (s,a, r , s ′) at once. From the
algorithmic perspective, this approach is similar to [10], however
here we do it synchronously.

Experienced transitions (s,a, r , s ′) are stored in a circular buffer
M and are sampled randomly to form a batch B. We use RMSProp
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[17] with momentum parameter 0.95 and gradient normalization,
if its norm exceeds 1.0, to optimize the loss function ℓθ (B), eq. (2)
and (3). The learning rate decay exponentially over time. Exact
parameters differ for each dataset and are summarized in Table A.1.
After each optimization step, the weights of the target network are
updated with ϕ := (1− ρ)ϕ + ρθ . Overview of the algorithm can be
seen in Algorithm 1 and details of the environment simulation are
in Algorithm 2.

We use a value of 1.0 as the discount factor γ . The environment
is episodic with a short average length of episodes, and as such it
makes sense to consider full returns. Undiscounted returns can in
theory yield a better strategy to choose features.

To promote exploration, we use ϵ-greedy policy. Exploration
rate ϵ starts at a defined initial value and it is linearly decreased
over time. Exact values of ϵ differ based on the dataset, and they
are described in Table A.1 in the appendix.

Reward for a correct classification is 0 and −1 for an error. This
leads to an optimistic initialization, since the outputs of an un-
trained network are around zero. Cost for feature selecting actions
is dataset dependent, but normalized into [0, 1]. Feature cost factor λ
satisfies 0 < λ ≤ 1, but in pracice it is λ ≪ 1. Rewards for feature se-
lecting actions are r = −λc ( f ). In such an environment, the optimal
function Q∗ is also bounded: −1 − λ ≤ Q∗ ≤ 0. We use this domain
knowledge and clip the target r + γQϕ (s ′, argmaxa′ Qθ (s ′,a′)) in
eq. (3) to [−1, 0]. We experimentally found that this approach avoids
initial explosion in predicted values and weights and as such greatly
speeds up and stabilizes the learning process.

Opposed to [11], we use rather large batches in the optimization
step. One batch contains 105 transitions. As we simulate 1000 envi-
ronments in one step, this means that one generated transition will
be replayed about 100 times on average. We found that this number
works well and enables efficient use of the hardware.

2.3 Theoretical Analysis
Proposition 2.1. For any observed state s ∈ S, let a∗ be the

optimal action to play in s , i.e., a∗ = argmaxa Q∗ (s,a), then:

∀a ∈ Af Q∗ (s,a) ≥ Q∗ (s,a∗) − λc (a)

The intuition behind the proof is that after taking a suboptimal
action a, the agent can still take the original optimal action a∗,
entering a state that has at least the same amount of information,
but the cost for the extra action is λc (a). The exact proof is in the
appendix. Since c (a) ≤ 1, the corollary is that for any observed
state s , the distance between Q∗ values for any feature selecting
actions is at most λ:

a1,a2 ∈ Af : |Q∗ (s,a1) −Q
∗ (s,a2) | ≤ λ

Since λ is typically very small, this means that the Q values for
these actions are close to each other and their variance has to be
sufficiently reduced for these actions to be distinguishable. This can
be achieved either by a sufficiently small learning rate or a large
batch size.

For the following proposition, we need to define a concept of
samples consistent with an observed state. A sample (x ,y) is consis-
tent with an observed state s = {(x (i )s , fi ) | ∀fi ∈ F̄ }, if all disclosed
values x (i )s are equal to x (i ) . Let D (s ) be a subset of all samples

(x ,y) from a dataset D, that are consistent with the observed state
s .

Proposition 2.2. For any observed state s ∈ S and any classifying
action a ∈ Ac = Y , the following holds:

Q∗ (s,a) = r (s,a) = P [a | (x ,a) ∈ D (s )] − 1

In other words, the true Q value for any classification action is a
ratio of classes corresponding to this action between all samples
consistent with the current observed state s , minus one. The exact
proof is in the appendix. It is derived from the fact that correct
classification happens with probability P [a | (x ,a) ∈ D (s )] and
the possible rewards are 0 and −1. The expression allows to verify
the Q value of the starting state, and in discrete domains it could be
used to minimize the variance of classification actions, by directly
learning the correct value instead of stochastic rewards.

3 EXPERIMENTAL RESULTS
We evaluate our algorithm on three datasets – MiniBooNE parti-
cle identification [8], Forest CoverType [8] and CIFAR-10 [5]. We
prepared and split the datasets into training/validation/testing sets
according to [13], to use the same setting when comparing the re-
sults. Because these datasets do not have an explicit cost associated
with features, uniform cost of 1.0 is used. Multiple values between
1.0 and 1e-4 are used as the cost factor λ, and different values cor-
respond to different average feature cost. Datasets information is
summarized in Table 1.

We directly compare to prior art algorithms Adapt-Gbrt [13] and
BudgetPrune [15], which are both decision trees based algorithms,
and also to the linear model used in [2]. We do not report other
algorithms that were already shown to performworse in [13] or [15].
We retrieved their performance from the published results, where
available. One machine equipped with Intel Xeon CPU E5530 and
NVIDIA TITANXGPUwas used to measure the time needed for the
algorithm to converge, which we report in Table 1, and which we
feel is an important factor for its practical usage. Unfortunately, the
prior art did not report the learning time needed for their algorithms,
therefore we cannot compare it. Note that in our algorithm, only
the training needs considerable resources, the execution time of a
trained model is negligible.

As our algorithm uses neural networks, we evaluate the accuracy
of a plain neural network classifier and report it as a baseline. This

Table 1: Evaluated datasets

Parameter MiniBooNE Forest CIFAR-10
Features 50 54 400
Classes 2 2† 2†
Train size 45359 36603 19761
Validation size 19439 15688 8468
Test size 64798 58101 10000
Network size 3x128 3x256 3x512
Training time 5 min 9 hrs 95 hrs
Transitions 10M 500M 1500M
† Classes in these datasets are binarized to be comparable to results
reported in prior art.
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Figure 1: Algorithm performance in tested datasets.

accuracy provides an estimate of an upper bound, to which our
algorithm should approach. For this baseline network, we used
three layers with RELU activation, with the same size as in our
algorithm for a particular dataset, and an output layer with one
output per class with a softmax activation.

The comparison of the achieved trade-off between classification
accuracy and feature cost is shown in Figure 1. The exact size of
the neural network layers, the number of transitions1 needed to
converge and the training time are reported in Table 1.

MiniBooNE dataset is compact and well suited for fast exper-
iments, having only two classes and 50 real-valued features. For
different values of λ, our algorithm gives a distinct trade-off point
between the average feature cost and classification accuracy. At any
point, it performs better compared to other algorithms, as shown in
Figure 1 (a). The linear model performs substantially worse than the
deep model. The accuracy of our algorithm with about 32 features
on average almost reaches the accuracy of the baseline network
with all features.

Forest CoverType dataset originally has 581012 samples and 7
classes. However, prior art algorithms reported their results only
on a reduced version with 110392 samples and 2 classes. For com-
parison, we report results on this reduced dataset. It has 54 features
– 10 real-valued and 2 categorical, encoded into binary vectors of
length 4 and 40. The learning time for this dataset is 50x longer
than for MiniBooNE dataset. Compared to prior art, our algorithm
performs better, for any value of λ (see Figure 1 (b)). The linear
model achieves its top performance with about 5 features and stops
at this point, not able to utilize more.

An interesting fact is that the algorithm’s best classification ac-
curacy exceeds the accuracy of the baseline network. This suggests
that our algorithm might work as some sort of regularization. Fig-
ure 2 (a) shows a further comparison between our algorithm and
the baseline classifier, and suggests that some features can actually
hurt performance. The baseline classifier using all features does

1Transition means one step of an agent, generating one tuple (s, a, r, s ′).
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Figure 2: Experiments on Forest dataset. (a) Performance on
training and test datasets (Forest with 36603 training sam-
ples and 7 classes), compared to plain neural network based
classifier using all features. (b) Performance in different ver-
sions of Forest dataset. We show a difference in training
dataset size (36603 or 400000 samples) and the binarized or
original multiclass problem.

not reach the performance of our algorithm on neither training nor
testing dataset.

To show that our algorithm can perform multiclass classifica-
tion and work with the original large dataset, we also report its
performance in Figure 2 (b).

CIFAR-10 is an image classification dataset. It was preprocessed
and classes were binarized according to [13]. This dataset contains
400 real-valued features. Our algorithm performs better than prior
art up to a point, where it uses 165 features on average (Figure 1
(c)). After that, the Adapt-Gbrt algorithm takes the lead. The linear
model is unable to acquire more then 5 features on average and fails
to make different trade-offs. Our algorithm converges to the limit
of the baseline classifier. In this dataset we could possibly boost
the performance by arranging the features into a grid pattern and
use convolutional networks, which are known to work well for this
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type of problems [6, 11]. We do not use this approach in this work
because we want to maintain the same architecture for all datasets.

3.1 Algorithm Properties
In Figure 3 (a), we observe how the Q values of the initial observed
state s0 evolve during the training on the multiclass Forest dataset.
The algorithm quickly estimates the correct Q values for all clas-
sification actions a ∈ Ac , since their value depends only on the
distribution of classes. Q values of feature selection actions a ∈ Af
change only slowly, due to their dependence on the next state.
These Q values are close to each other, as predicted by Proposition
2.1.

Figure 3 (b) shows the evolution of the average reward, episode
length and accuracy on a small validation dataset during learning.
The initial policy that the algorithm quickly finds corresponds to
always selecting a class which has the highest ratio in the dataset.
This is expectable, since this strategy achieves an optimal accuracy
without any feature. From this point, the average accuracy and
reward slowly increase to their supremum.

Figure 3 (b) in the middle and Figure 4 (a) shows the evolution
of the average number of acquired features, which is equivalent to
the average episode length, in this case. The algorithm starts by
selecting all the features at first and then decreasing their amount.
This is a result of optimistic initialization. The Q values of classifica-
tion actions are estimated quickly into their range between -1 and 0.
On the contrary, the Q values for feature selection actions change
slowly and are around zero at the beginning of the training. At
some point, the algorithm finds a core subset of essential features
and then add to it to improve accuracy, as shown in Figure 4.

Figure 5 shows a histogram of number of used features for dif-
ferent samples, in the multiclass Forest dataset. It confirms that
the algorithm selects a different subset of features for each sample
since every episode length is present. The histogram additionally
suggests that there are three modalities, corresponding to easy,
average and difficult samples.

Figure 6 (a) shows how the parameter λ affects the trade-off
between accuracy and average feature cost. Higher λ forces the
algorithm to select fewer features on average, and as a consequence,
the accuracy falls down. In Figure 6 (b) we report the effect of the
neural network size on the performance. A larger network performs
better for any λ value.

4 RELATEDWORK
The most similar work to our approach is [2], which also used
Q-learning. However, they worked with a limited linear regression,
which resulted in inferior performance. We instead use neural net-
works allowing us to use our algorithm in wider range of problems.

Authors of [1] use a recurrent neural network that uses attention
to select blocks of features and classifies after a fixed number of
steps. Compared to our work, decisions of this network are hard
to explain. On the other hand, our Q-learning based algorithm
produces semantically meaningful values for each action. Moreover,
as we use a standard algorithm, we can directly benefit from any
enhancements made by the community.

There is a plethora of tree-based algorithms [7, 13–15, 23–25].
The article [13] implements Adapt-Gbrt algorithm and it represents
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Figure 3: Learning progress inmulticlass Forest dataset with
λ = 0.01. (a) Learned Q values for all actions, Qθ (s0, ·), in
the initial state s0. (b) Average reward, length and accuracy
through learning on validation dataset. One point on x axis
corresponds to 100 learning steps. The graph is truncated, it
would end with 5000 on the x axis, for the full training.

the state-of-the-art which we directly compare to. This algorithm
uses two separate models and a gating function that selects which
one is more appropriate to use with a given sample. High-Prediction
Cost (HPC) model classifies samples regardless of the cost and Low-
Prediction Cost (LPC) model adaptively approximates HPC model
in regions of input space where it achieves adequate accuracy. In
this concrete instantiation, Adapt-Gbrt, it uses Gradient Boosted
Regression Trees (GBRT) as the LPC model and either Random
Forests or RBF-SVM as the powerful HPC model. Essentially, this
algorithm is not restricted to these models, and could be even used
together with our algorithm.

A different set of algorithms employed Linear Programming (LP)
to this domain [20, 21]. The algorithm presented in [20] uses LP to
select a model with the best accuracy and lowest cost, from a set
of pre-trained models, all of which use a different set of features.
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Figure 4: Effect of different λ on the average number of ac-
quired features and accuracy on multiclass Forest dataset.
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Figure 5: Histogram of used features on the multiclass For-
est dataset, with different λ. On both (a) and (b) we see three
peaks, corresponding to very easy, average and difficult sam-
ples.

The algorithm also chooses a model based on the complexity of the
sample, similarly to [13].

In [22], the authors propose to reduce the problem by finding
different disjoint subsets of features, that are used together asmacro-
features. These macro-features form a graph, which is solved by a
dynamic programming based algorithm. The algorithm for finding
different subsets of features is complementary to our algorithm and
could be possibly used jointly to improve performance.
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Figure 6: Effect of λ and network size on performance in the
MiniBooNE dataset. (a) Different values of λ affect the ac-
curacy vs. feature cost trade-off. (b) Comparison of neural
network sizes. Smaller network achieves worse overall per-
formance.

Reference [18] uses a fixed order of features to reveal, with
increasingly complex models that can use them. However, the order
of features is not computed, and it is assumed that it is set manually.
On the other hand, our algorithm is not restricted to a fixed order
of features (for each sample it can choose a completely different
subset), and it can also find their significance automatically.

The early work [16] analyzes a problem similar to our definition
of CwCF. However, algorithms introduced there require memo-
rization of all training examples, which is not scalable in many
domains.

5 CONCLUSION
We formulate the problem of classification with costly features as a
generic sequential decision-making problem. We use Q-learning
algorithm implemented with neural networks and show that even
this basic reinforcement learning algorithm exceeds the perfor-
mance of prior-art algorithms on several datasets. Moreover, the
architecture of the used neural network can be easily adapted to a
specific domain, e.g., to use convolutions in case of images, which
is likely to further improve performance.

Our algorithm can be easily extended with any improvement
in the deep learning or reinforcement learning. Performance can
be improved by implementing extensions to the underlying DQN
algorithm [4], or possibly by using longer traces [12]. Combination
with complementary algorithms [13, 22] could also improve perfor-
mance. As a future work, the algorithm could be extended to active
learning domain, where not all labels are available.
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APPENDIX
Proposition 2.1. For any observed state s ∈ S, let a∗ be the optimal

action to play in s , i.e., a∗ = argmaxa Q∗ (s, a), then:

∀a ∈ Af Q∗ (s, a) ≥ Q∗ (s, a∗) − λc (a)

Proof. Let V ∗ (s ) = maxa Q∗ (s, a) denote the expected value of play-
ing the optimal policy from observed state s .

Q∗ (s, a) = −λc (a) + E
s′∼t (s,a )

[
max
a′

Q∗ (s′, a′)
]

≥ −λc (a) + E
s′∼t (s,a )

[
Q∗ (s′, a∗)

]
= −λc (a) − λc (a∗) + E

s′∼t (s,a )
E

s′∗∼t (s′,a∗ )

[
V ∗ (s′∗)

]
≥ −λc (a) − λc (a∗) + E

s∗∼t (s,a∗ )

[
V ∗ (s∗)

]
= −λc (a) +Q∗ (s, a∗)

The first step follows from the maximal action being better than any other
action. The second step is derived from the definition of theQ function. For
the third step, we need to realize that the single expectation, as well as the
pair of expectations, is over the same set of data samples. For each sample,
we can follow the exact same policy from s′∗ as we would from s∗. This
policy will have the same misclassification cost, averaged over all samples.
Furthermore, if this policy asks about the feature a, we do not pay the cost
for this feature. Therefore, in expectation over all samples reaching s , the
average feature cost included in values V ∗ (s′∗) will not be higher than the
feature cost included in values V ∗ (s∗). Hence, the overall expected value in
states s∗ is not higher than the expected value in states s′∗. □

Proposition 2.2. For any observed state s ∈ S and any classifying action
a ∈ Ac = Y , the following holds:

Q∗ (s, a) = r (s, a) = P [a | (x, a) ∈ D (s )] − 1

Table A.1: Algorithm Parameters

Parameter Miniboone Forest CIFAR-10

Network size 3x128 3x256 3x512
Parallel agents 1000 1000 1000
Replay buffer size 2e6 3e6 5e5
Batch size 1e5 1e5 1e5
Training steps* 1e4 5e5 2e6
Soft-target factor ρ 0.01 0.01 0.01

ϵstart† 0.50 0.70 1.00
ϵend 0.05 0.15 0.10
ϵsteps 2e3 2e4 1e5

LRstart‡ 1e-4 1e-4 1e-6
LRend 1e-7 1e-7 3e-7
LRsteps 5e3 1e4 1e4
LRfactor 0.1 0.9 0.9
* One step means simulating all 1000 agents for one step.
† Epsilon controls exploration in the ϵ -greedy policy. The learning
starts with ϵstart and linearly decreases to ϵend within ϵsteps
steps.

‡ The learning rate is initialized to LRstart and it is multiplied by
LRfactor every LRsteps steps, until it reaches its minimum LRend .

Proof. Let p (a) = P [a | (x, a) ∈ D (s )] denote the ratio of class a in
the set of samples consistent with the observed state s .

Q∗ (s, a) = r (s, a)

= 0 · p (a) + (−1) · (1 − p (a))
= p (a) − 1

All classification actions terminate the episode, so that theQ∗ value ismerely
the expected reward. The correct classification happens, in expectation, with
probability p (a) and the reward is 0. Incorrect classification happens with
probability (1 − p (a)) and the reward is −1. □
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