Using Uniform State Abstractions For Reward Shaping With
Reinforcement Learning

John Burden
Department of Computer Science, University of York
York, UK
jjb531@york.ac.uk

ABSTRACT

Traditional reinforcement learning methods typically take a very
long time to learn satisfactory policies for most complex problems.
This can be alleviated with the introduction of knowledge based
reward shaping, in which a domain expert provides knowledge to
the agent in order to guide it towards better performance. The main
drawback to this is the cost of encoding such knowledge, or the
availability of domain experts. In this paper a method is proposed to
relieve the need for some of the knowledge required by automating
the generation of Abstract Markov Decision Processes (AMDPs)
using uniform state abstractions. This paper then explores the effec-
tiveness and efficiency of different resolutions of states abstractions
and finds that many of these fare well even when compared to
hand-crafted AMDPs for variations of the Flag Collection domain.

KEYWORDS

Reinforcement Learning, Reward Shaping, Uniform Abstraction

1 INTRODUCTION

Reinforcement Learning (RL) has shown itself to be a successful
machine learning paradigm, learning to complete tasks principally
through interaction with an environment and receiving feedback.
This feedback is used to alter the behaviour of the agent towards re-
ceiving an increased level of positive feedback. Like many machine
learning techniques, RL suffers from the ‘Curse of Dimensionality’
[1]. This causes there to be exponentially many state combinations
for each state-dimension, and crucially limits the use of traditional
RL to small scale domains.

One method of overcoming this limitation is to impart domain
knowledge to the agent in order to guide it towards more rewarding
behaviour. This can be achieved by the process of Reward Shaping
[9], where extrinsic reward is given to the agent in a manner corre-
sponding to domain knowledge in addition to the normal intrinsic
feedback it receives from the environment. If the extrinsic reward
is defined in a specific manner, then the ultimate behaviour learned
by the agent will not change [8].

This, however, assumes that domain knowledge is readily avail-
able and encoded for use by the agent. Such knowledge is often
expensive to encode or impractical to obtain. Some approaches
to automatically generate the shaping function have been made
[6], but these require analysis of the state-space in order to find
sub-goals for the agent. This is a costly process.

Daniel Kudenko
Department of Computer Science, University of York
York, UK
National Research University Higher School of Economics

Saint Petersburg, Russia
JetBrains Research

Saint Petersburg, Russia

daniel. kudenko@york.ac.uk

Solving an abstract version of the original task, has proven to be
useful for finding shaping functions [3][5][7]. However, this still
requires domain knowledge, albeit less, in the form of appropriate
abstractions of states, transitions and rewards.

The aim of this paper is to present a conceptually simple, yet
surprisingly effective method for constructing spatial abstractions
of environments with a spatial structuring. The agent can then
solve these in order to yield a useful reward shaping function. This
can then improve the overall performance of the agent. Although
the environments used are limited to ones with spatial structure,
this method should be generalisable to temporal abstractions also.

The rest of the paper will be organised as follows: First, the
relevant background knowledge and terminology is given. Then
the proposed method is detailed. The domains that the method was
tested against are then shown. The results of these experiments are
displayed and analysed. Finally, future avenues for this research
are considered.

2 BACKGROUND

2.1 Reinforcement Learning

Reinforcement Learning consists of interaction between an agent
and environment [10]. The agent observes how the environment re-
sponds to the agent’s actions and updates its behaviour accordingly.
The response of the environment is typically a numerical reward
that depends on the propriety of the action made by the agent for
the current state of the environment at that time. Typically, this
interaction is modelled by a Markov Decision Process (MDP).

An MDP is a tuple (S, A, R, P) where S is a set of states in which
the environment can inhibit, A is the associated action space de-
tailing available actions for each state, R(s, a,s”) is the immediate
reward the agent receives after transitioning from state s in the
environment to s” via action a. P(s, a,s”) = P(s’ | s, a) — that is, the
probability of transitioning to state s’ when in state s and action a
is performed. A policy x for an MDP is a function mapping states
to the action for the agent to perform in that state. The goal of
solving an MDP is to find a policy that maximises the expected
cumulative reward (often called the return). The policy achieving
this is referred to as optimal.

Iterative approaches are often used to find the optimal pol-
icy. Algorithms based on these approaches often utilize temporal-
difference (TD) updates, which update values of states V(s) or state-
action pairs Q(s, a), based on estimates of these value functions at
different times.

One fundamental TD algorithm is called Q-Learning [10], and

after each transition s — s’ , updates the Q values:
Q(s.a) = Q(s,a) + a(R(s, a,s") + y max Q(s”,a’) — O(s. a))
o

Here « is the learning rate, a measure indicating how to weight
new information Q-values against old, y is the discount factor, that
weights regard for future reward as opposed to immediate.

When selecting actions, it is important to balance both "explo-
ration and exploitation” [10]. This is necessary in order for the
agent to avoid becoming trapped within locally optimum policies.
To achieve this balance, the agent, with probability e, selects an
available action at random. With probability 1 — € the agent selects
the action a, when in state s, that maximises the value of Q(s, a).

In order to speed up the learning process, the agent can make
multiple updates for each observation, following the trajectory
of state-action pairs of which the agent has recently directly ex-
perienced. Each of these state-action pairs is recorded, and each
of these pairs has an associated value referred to as its eligibility.
This eligibility value is multiplied by the the temporal difference
to create the new update value. This is done for all pairs in the
trajectory. After an action is taken, the current state-action pair
has its eligibility set to 1, and the other state-action pairs in the
trajectory have their eligibility multiplied by some parameter A < 1.
The addition to Q-Learning speeds up propagation of the TD values
through the state-action space. Q-Learning using these eligibility
traces is referred to as Q(A)-Learning [10].

Despite the speed up in the learning process given by Q(4)-
Learning, the learning process is still intractably slow for many
complex problems. This is due to the aforementioned Curse of
Dimensionality. In order to overcome this issue, some form of gen-
eralisation or conveyance of knowledge to the agent is required.
This motivates the creation of new models for RL to use in order to
utilise these these approaches.

2.2 Abstract Markov Decision Processes

An Abstract Markov Decision Process (AMDP) is, much like an
MDP, a tuple (T, A, R, P). T is a set of abstract states. A is a set of
abstract actions, corresponding to chains of primitive actions in
the MDP. R is an abstract reward function, with R(t, a, t") denoting
the reward given when an agent moves from abstract state ¢ to
t’ using abstract action a. Finally, P is the transition probability
function, working in the same way as for an MDP. There exists also
an abstraction function Z such that for s € S of the associated MDP
Z(s) = t denotes that state s is encapsulated by abstract state ¢.
AMDPs are useful generalisations of large MDPs that reduce large,
intricate problems to smaller, simpler ones.

2.3 Reward Shaping

One form of giving knowledge to the agent is reward shaping. Re-
ward shaping consists of giving the agent some additional reward

F(s, a,s”) that represents prior knowledge. This additional knowl-
edge intuitively is used to steer the agent in the right direction.
With this additional reward the Q-Learning update becomes:

0O(s,a) = Q(s, a)+a(R(s,a,s")+F(s, a, s')+y max o(s’,a’) - O(s, a))

It has been shown that if this additional reward is given as the
difference of the potential of the two states, that is,

F(S, a, S’) = Y¢(sl) - QZS(S)

then the optimal policy will not change as a result of this extra
reward [8]. Without this potential based reward shaping — using
just arbitrary extra reward — the optimal policy can indeed change
[9]. The main concern with reward shaping from a practical per-
spective is the origin of the potential function ¢. Defining some
function that gives an indication of the "quality" of a transition is
often time consuming or infeasible, due to the sheer number of
such transitions.

2.4 Abstract Reward Shaping With AMDPs

One method of inducing a potential function with comparatively
little external input is to solve an abstract version of the problem
using an appropriate AMDP [3]. If this is done using value iteration,
then there will be a value V(¢), for each abstract state ¢ € T of the
AMDP. For each state s € S of the MDP, the potential function for
reward shaping can then be set to ¢(s) = wV(Z(t)) , for some w
used to tune the weighting given to this external reward, and the
state abstraction function Z.

3 DOMAIN EXPERTS AND KNOWLEDGE
REVISION

Domain experts can be used in order to construct appropriate
AMDPs for specific environments [3]. This involves defining an
abstraction function Z mapping low-level states to abstract states,
as well as transition and reward functions for the AMDP. This
hand-crafted AMDP can then be easily solved using value iteration
before the learning process begins. Then it can be used for reward
shaping in the manner given in section 2.4.

Whilst this approach certainly requires less input than defining
¢ over every state, it can still be considerable work for the domain
expert. Moreover, the suitable state abstractions may even be only
partially known, or not known at all.

Domain experts are not infallible and will potentially make mis-
takes. Inaccuracies in reward shaping can lead to a slower conver-
gence rate [2]. This has been addressed using knowledge revision
for AMDPs [4]. In this approach, the abstract agent updates its tran-
sition probabilities to reflect its experiences. During each episode,
the agent records which abstract transitions ¢ %t are used. At
the end of the episode, the agent applies the following update rule
to each transition in the AMDP. The AMDP is then resolved.

P(t,a,t') + a(1 — P(t,a,t")),ift 2, toccurred
P(t,a,t’) + a(0 — P(t,a,t)), otherwise

P(t,a,t') = {

Principally, doing this causes states that are not visited to have
a lower probability attached to their associated transitions. States
may not be visited due to incorrect domain knowledge or due to
poor expected long-term reward. This yields lower values for V(s),

which in turn reduces the probability that AMDP will attempt to
utilize these states for shaping. The downside to this approach is
that resolving the AMDP can be very costly, depending on its size.

4 EXPERIMENTAL DOMAIN

The environment that will be used to evaluate various abstractions
for RL is the Flag Collection domain.

The Flag Collection domain is an augmentation of the naviga-
tional Gridworld environment. The agent is tasked with traversing
a grid of cells, locating and picking up flags and taking them to
the goal. The states of the environment are the grid cells, as well
as which flags have been picked up so far. The agent can move in
the four cardinal directions one cell at a time. In this environment
the agent is given reward zero after almost every transition. The
exceptions to this are when it reaches the goal, at which point the
agent receives a reward proportional to number of flags collected
(1000 times the number of flags collected). The agent also receives
a smaller reward of 100 when it picks up a flag. The agent’s task
is made more difficult by impassable walls, spread throughout the
domain. Further, the domain does not "roll", the agent cannot move
out of the area and reappear on the other side. Episodes within the
flag domain only terminate when the agent reaches the goal state.

The Flag Collection environment has intuitive abstractions. Ab-
stract states are in the form of ‘rooms’, which are defined as collec-
tions of adjacent cells. Rooms are often formed naturally by walls
within the environment, which limit movement. Abstract transi-
tions are simply transitions between rooms instead of individual
cells.

The Flag Collection domain was also selected for its scalability
— it can be arbitrarily large with many flags. It also has been ex-
tensively used to evaluate RL algorithms and therefore is a solid
choice for comparing the results here against benchmarks.

Different factors of this domain may markedly change the diffi-
culty for an agent to complete its task. These factors may include
parameters such as the connectivity of the rooms making up the
environment, the presence of wide open spaces, long corridors, the
total number of states, among others. In order to assess the utility
of any RL method it seems prudent to test the method on multiple
Flag Collection domains, each expressing a factor that may affect
performance. As such, six variations on the domain were evaluated
in this paper. These variations are shown in figure 1.

It is worth mentioning that not all environments naturally have
such a spatial structure like the Flag Collection domain. In Sec-
tion 7.1.1 it is described how this method could be extended to deal
with temporal abstractions.

These variations are additionally described in Table 1.

5 METHOD

Bestowing to the agent knowledge from a domain expert, whilst
having been shown to be helpful, is sometimes intractable or im-
practical. This is often due to lack of knowledgeable domain experts
or the expense of encoding the appropriate knowledge. The method
presented here attempts to recover some of the benefits of providing
such knowledge, without the associated costs or time sinks. This is
achieved using a simple uniform partitioning of the environment

into abstract states and combining this with AMDP-based reward
shaping.

For the purposes of this paper, a ‘tiling’ of an environment will
refer to a partition of the environment into uniform shapes of equal
size. The size of these tilings will be denoted by how many con-
stituent concrete states make up each individual tile. For example,
if a two dimensional environment is tiled using a 3 x 3 tiling, then
each tile is a square containing 32 cells.

In the aid of reducing confusion over nomenclature, when refer-
ring to the distinct method of ‘Tile Coding’ [10], the full name shall
be used in order to distinguish it from the method presented here.

To begin the method presented by this paper, take an environ-
ment and tile it using an appropriate sized tiling — the appropriate
size will often depend on time available and the size of the environ-
ment — it can be considered a hyper-parameter of the system. This
tiling partition is then to be used to construct the corresponding
AMDP in order to be used for AMDP reward shaping. The state
abstraction function will be given as the mapping from concrete
state to tile. The abstract actions available in each state are moving
to adjacent tiles in the abstract state space.

The abstract reward is defined in such a way to represent a sim-
plified version of the reward, essentially representing a manner of
measuring the "success" of the agent. Abstract rewards are usually
quite sparse. For instance, there may be zero reward entirely until
the end of an episode, where a single evaluation of performance
is given, say for a number of tasks completed. In order for this to
be realisable, the abstract agent may need to be told in which ab-
stract states certain tasks can be completed. This, unfortunately, is
provided by external domain knowledge. However this was always
present in hand labelled abstractions used in previous work [9].
There is still significantly less information given to the agent, as
the abstract states or transitions in this method are determined au-
tomatically. From needing domain knowledge of the abstract states,
available transitions and abstract rewards, this method reduces the
required knowledge to just abstract rewards.

Once this AMDP is constructed, value iteration is used to cal-
culate V(s) for each abstract state. Then, as is typical for AMDP
reward shaping, the extrinsic reward is defined as

F(s,a,s") = yg(s') = §(s) = yowV(Z(s") — 0V (Z(s))

where Z is the state abstraction function.

5.1 Difference From Tile Coding

It is important to distinguish the method proposed by this paper
from Tile Coding. Tile Coding is a technique for RL to help the
agent to generalise states, especially for continuous domains [10].
Tile Coding does this by having a number of ‘Tilings’ that are larger
than the state space. Each tiling consists of a number of ‘active tiles’
which partition the state space. All of the tilings are offset from
each other by a known amount. This possibly changes which active
tiles each state is part of for each tiling. Each state now belongs
to exactly one active tile for each tiling. This leads to a feature
vector representation mapping local groups of states to the same
vector. These vectors are then used for function approximation RL
methods, where the agent learns over the Tile-space.

Whilst Tile Coding seems similar to the method proposed at first
glance, there are a few important differences to note.

o

(a) Basic Flag Collection domain

: L]

*i

H

(c) Open Space Flag Collection domain

(e) High Connectivity Flag Collection domain

i

g i

(b) Big Flag Collection domain

Il

(d) Long Strips Flag Collection domain

imE

-

(f) Low Connectivity Flag Collection domain

Figure 1: Graphic representation of each variation on the Flag Collecting domain. The agent begins at the red cell marked ‘S’
and must traverse to the green cell marked ‘G’, whilst moving through yellow flag cells marked ‘F’.

First is the fact that due to the offset of each Tiling in Tile Coding,
updates to one specific feature vector can affect surrounding feature
vectors also, namely the ones that share other active tiles. This is
not possible in the proposed method, since only one Tiling is used,
and therefore no active tiles are shared. Whilst this may seem like
a disadvantage for the proposed method, it does allow this method
to view the active tiles as abstract states in an AMDP. This allows
the solving of this AMDP and use in reward shaping. This is not

possible with Tile Coding whilst retaining the sharing of active
tiles in feature vectors.

Secondly, and more importantly, is that when Tile Coding is
used with Function Approximation RL methods, the agent loses the
ability to distinguish between states mapping to the same feature
vector. Indeed, this is the whole point, as it reduces the different
number of state-action pairs to learn values for. When the actions
of the agent are limited, this can hinder the ability of the agent to

Name

Description

Basic

This is the basic environment for the Flag Collection domain. This has been used to test many RL algorithms
previously and serves as a standard benchmark [2][4].

Big

The ‘Big’ variation is the same as the the basic one, except every cell in the basic environment becomes a set of
3x3 cells. This increase in size will test the scalability of the method.

Open

This variation is mostly open space with a few obstacles to traverse around. This variation was selected to see
how the agent handles a lot of wide open space and many action choices available.

Strips

The ‘Strips’ variation is composed of rooms of long, thin strips. These were chosen to directly contradict the
assumptions made by the upcoming method that abstractions are uniformly square. This was done in order to
see if the agent is able to adapt to environments that are very different from their abstract representation.

High Connectivity

The ‘High Connectivity’ environment is full of rooms that are very interconnected. This fits with the abstract
agents assumption that it can always transition from one room to the next.

Low Connectivity

The ‘Low Connectivity’ variation uses the same room layout as the ‘High Connectivity’ variation, except now
the agent cannot transition between most rooms. More walls are present to block off its movement. Both the
high and low connectivity versions were selected in order to compare how the agent copes when transitions the
abstract agent uses for shaping do not exist.

Table 1: Descriptions of the variations on the Flag Collection domain that were selected.

navigate the state space successfully, as before it may have chained
together different actions within one group of states that map to
the same feature vector. Using Tile Coding, it cannot do this, and
in each feature vector, the agent can perform only one action. In
environments that require high levels of precision — such as the
Flag Collection domain — this can lead to the agent becoming
unable to complete the task. This disadvantage is not shared with
the proposed method, the agent never loses the ability to distinguish
between different states, regardless of which tile these states map
to under the tiling. This allows the agent to still achieve precision
even when actions are limited.

Both of these differences together make Tile Coding not suitable
for environments in which actions are limited and precision is
required - a flaw not shared by the proposed method.

6 EXPERIMENTAL RESULTS

The results from using the proposed method in Section 5 are now
given. Each variation of the Flag Collection environment was com-
pleted by the agent ten times. The results shown are the mean
values of each attempt. The uniform tiling was performed using
tiles of varying sizes depending on the variation size — but typically
using tiles from size 3 X 3 up to 10 X 10. The agent also completed
each variation using a “True’ hand-labelled abstraction to represent
perfect knowledge, as well as an agent that uses no reward shaping
— just the standard Q(A) algorithm.

Each algorithm used the same parameters, with the exception of
the number of episodes the agent was tested on — this was tuned
for each agent to show the differences in convergence times easier
to visualise. The parameters used were & = 0.1, A = 0.9, y = 0.99,
® = 20, and € = 0.5 initially and linearly decaying to 0.05. These
parameters were all found empirically to give strong results over a
wide range of environment variations and abstractions.

In Figure 3a there is a clear trend showing that many of the uni-
form tilings actually can compete with hand-labelled examples, and
sometimes even converge quicker. This is actually quite intuitive,
as using smaller tilings over a state-space will typically yield more
transitions between abstract states. This means that there are more

468.0

Time Taken In Seconds

True 3x3 4x4 5x5 7x7 9x9 10x8 None
Abstraction Used

Figure 2: Time taken to solve each abstraction and simulate
10,000 episodes for the basic Flag Collection domain

states in which reward shaping is fully utilised, as ¢(s) = @(s”) if
both s, s” € t for abstract state t. The extrinsic reward is then equal
to yd(s’) — ¢(s) = (y — 1)¢(s). In the case of the these experiments,
the extrinsic reward then becomes —0.01 X ¢(s). The point here is
that having more state transitions with a high extrinsic reward will
give the agent more guidance.

Whilst using smaller tilings may improve the number of episodes
required to converge to a near-optimal policy, solving the AMDP
created becomes harder the more abstract states it has. In Figure 2
the time taken to solve each abstraction and simulate 10000 episodes
is shown. This figure shows the vast increase in time required
for smaller tilings. Many of the smaller tilings take much longer
than the hand labelled abstraction. However, the 5x5 tiling actually
takes a time comparable to this hand labelled abstraction. The 5x5
tiling and hand labelled abstraction both perform similarly. This
is a very positive result due to the difference in knowledge given
to each agent and abstraction. The larger tilings take much less
time, and although they perform worse than the hand labelled

abstraction, they do not perform particularly badly. In fact, every
tiling outperformed the standard Q(1) algorithm.

Throughout the rest of the results in Figure 3, this trend con-
tinues. It is worth noting that many of these variations of the flag
collection problem required markedly fewer episodes in order for
most of the abstractions to converge upon the optimal policy. A lot
of the uniform abstractions converge quicker than the hand-labelled
abstraction.

Figure 3b appears to get stuck in a local optimum and the agent’s
policy doesn’t converge on a final flag. This is likely to do with
the initial parameters, the size of the domain and also the accuracy
required to achieve reward. The abstract states are also much larger
in comparison to individual states — meaning that navigating to an
abstract state is not as useful. It is worth noting that this largeness
also applies to the hand-crafted abstraction.

7 CONCLUSION

This paper has shown that in many variations of a commonly
tested RL domain, that uniform abstractions of a state space can
often compete with hand crafted domain knowledge. Previous work
used domain knowledge to produce a state abstraction function,
an abstract transition function and abstract reward function. The
results from this paper suggest that the state abstraction function
and abstract transition function are not a hugely important factor
for convergence of the agent, and that just grouping states which
are "close by" in the state-space is enough.

7.1 Future Work

There are innumerable ways in which this idea can be extended.
Some of the more promising ones are addressed briefly here.

7.1.1 Temporal Abstractions. The abstractions created for the
Flag Collection domain used in this paper were of only a spatial
nature. The utility of uniform abstractions should also apply tem-
porally. By this, it is meant that instead of creating abstract states
using their spatial position in the environment, the agent creates
abstractions based on time. There is a remarkable similarity be-
tween abstractions in both space and time. In the Flag Collection
domain (and most other MDP-based environments) a single action
is assumed to take unit time. This means that a temporal abstraction
of a fixed time can be viewed as a path of fixed length through the
statespace of the MDP. Uniform spatial abstractions could then be
constructed over these areas in the same way. What remains to be
seen is how well the method of uniform abstractions maps over to
an temporal domain, due to the fact that the environment dynamics
and topology will no longer necessarily be limited to physical space.

7.1.2 Hierarchies of Abstraction. When using the method pro-
posed in this paper and the state space of the environment gets
even larger, there are currently two options. The first is the keep
the tile dimensions the same, but this will drastically increase the
time taken to solve the associated AMDP. The second option is
to increase the tile size. This will resolve difficulty of solving the
AMDP. However, doing this will reduce the amount of shaping
given to the agent, as more states are considered to be in each tile.
This will likely slow down learning.

A possible solution to this, would be to introduce a ‘hierarchy’ of
abstraction. The principal idea here being to repeat the tiling process
on the constructed AMDP. The tiling process may be repeated an
arbitrary amount creating a "hierarchy" of AMDPs, with the higher-
level AMDPs informing and shaping the lower levels. It is not clear
if this would be worth doing, or if the advantages would diminish
for each level of abstraction added. Doing this could potentially
allow for solving much larger problems, without as large sacrifices
as the previously stated other options.

7.1.3 Removing Flag Knowledge. One of the remaining details
that is provided to the agent by a domain expert is which abstract
state each flag lies within. Certainly, as the abstract states become
smaller, this assumption becomes harder to justify. Removing this
characteristic would be ideal from a perspective of automation.
Knowledge Revision for AMDPs [4] allows a learning agent to up-
date erroneous knowledge in the AMDP. Building on this, if the
flag collection action is always considered to "collect" the appropri-
ate flag for every state of the AMDP, then the knowledge revision
technique could be employed to devalue the "collect” action in in-
correct abstract states. Doing so would reduce the value of these
non-existent transitions, causing the agent to ignore them. This
would potentially enable the agent to create effective abstractions
with essentially zero domain knowledge. What is uncertain, is how
quickly the revision techniques would remove all of the erroneous
knowledge, and whether this would impact the viability of this
method for large scale applications.

REFERENCES

[1] Richard Bellman. 2010. Dynamic Programming. Princeton University Press,
Princeton, NJ, USA.

[2] Kyriakos Efthymiadis, Sam Devlin, and Daniel Kudenko. 2016. Overcoming
incorrect knowledge in plan-based reward shaping. The Knowledge Engineering
Review 31, 1 (2 2016), 31-43. https://doi.org/10.1017/S026988891500017X

[3] Kyriakos Efthymiadis and Daniel Kudenko. 2014. A comparison of plan-based
and abstract MDP reward shaping. Connection Science 26, 1 (2014), 85-99.

[4] Kyriakos Efthymiadis and Daniel Kudenko. 2015. Knowledge Revision for Rein-
forcement Learning with Abstract MDPs. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems (AAMAS ’15). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, 763-770. http://dl.acm.org/citation.cfm?id=2772879.2773251

[5] M. Grzes and D. Kudenko. 2008. Plan-based reward shaping for reinforcement
learning. In 2008 4th International IEEE Conference Intelligent Systems, Vol. 2.
10-22-10-29. https://doi.org/10.1109/1S.2008.4670492

[6] M. Marashi, A. Khalilian, and M. E. Shiri. 2012. Automatic reward shaping
in Reinforcement Learning using graph analysis. In 2012 2nd International
eConference on Computer and Knowledge Engineering (ICCKE). IEEE, 111-116.
https://doi.org/10.1109/ICCKE.2012.6395362

[7] Bhaskara Marthi. 2007. Automatic Shaping and Decomposition of Reward Func-
tions. In Proceedings of the 24th International Conference on Machine Learning
(ICML °07). ACM, New York, NY, USA, 601-608. https://doi.org/10.1145/1273496.
1273572

[8] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. 1999. Policy Invariance

Under Reward Transformations: Theory and Application to Reward Shaping.

In Proceedings of the Sixteenth International Conference on Machine Learning

(ICML °99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 278-287.

http://dl.acm.org/citation.cfm?id=645528.657613

Jette Randlev and Preben Alstrem. 1998. Learning to Drive a Bicycle Using Rein-

forcement Learning and Shaping. In Proceedings of the Fifteenth International Con-

ference on Machine Learning (ICML *98). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 463-471. http://dl.acm.org/citation.cfm?id=645527.757766

Richard S. Sutton and Andrew G. Barto. 2017. Introduction to Reinforcement

Learning (2 ed.). MIT Press, Cambridge, MA, USA.

[

[10

https://doi.org/10.1017/S026988891500017X
http://dl.acm.org/citation.cfm?id=2772879.2773251
https://doi.org/10.1109/IS.2008.4670492
https://doi.org/10.1109/ICCKE.2012.6395362
https://doi.org/10.1145/1273496.1273572
https://doi.org/10.1145/1273496.1273572
http://dl.acm.org/citation.cfm?id=645528.657613
http://dl.acm.org/citation.cfm?id=645527.757766

3.0 — - -— —
2.5
°
£ 204 i
o T
8 A
8 1.5
2 —J— True
5 —}— 3x3 Tiling
g 1.0 —F— 4x4 Tiling
—F 5x5 Tiling
—— 7x7 Tiling
0.5 —— 9x9 Tiling
—— 10x8 Tiling
~—f— No Shaping
0.0 - - v "
0 2000 4000 6000 8000 10000
Episode No.
(a) Basic Flag Collection domain
3.0 1

2.5

g
<)

% ‘
HiHH

4x4 Tiling
5x5 Tiling
7x7 Tiling
9x9 Tiling
10x10 Tiling
No Shaping

0.5

0.0 T u T T
0 20 40 60 80 100

Episode No.

(c) Open Space Flag Collection domain

3.0

2.5

°
L2014 . -
S
2 —
s -
& 1.5 L —
o
2 Nyl E Tree
5 ~J— 3x3Tiling
tzS 1.0 — ~ —— 4x4 Tiling
- 4 T —F— 5x5 Tiling
T T —F— 7x7 Tiling
0.5 —~T—F 9x9Tiling
JUNDN P q
—}— 10x10 Tiling
1 1 1 -L —— No Shaping
0.0 T T T y
0 20 40 60 80 100

Episode No.

(e) High Connectivity Flag Collection domain

3.0

2.5

N
o

H
S HHHHHH
o

No. Of Flags Collected
-
w

= + -+ -+ —— True i
1~ 9x9Tiling
1.0 = = = o o © = 12x12 Tiling
—F~ 15x15 Tiling
—— 21x21 Tiling
0.5 - —— 27x27 Tiling
—F— 32x24 Tiling
—F— No Shaping
0.0 v : - -
0 10000 20000 30000 40000 50000
Episode No.
(b) Big Flag Collection domain
3.0
2.5

No. Of Flags Collected
- ~
v 1=}

g
o

0.5 1

0.0

—— True
—— 3x3 Tiling
—— 4x4Tiling
—— 5x5 Tiling
—— 7x7 Tiling
—F— 9x9 Tiling
~—— 10x10 Tiling
—F— No Shaping

3.0

Z(I)O 4(‘)0 6('70 8(I)0 1000
Episode No.

(d) Long Strips Flag Collection domain

2.5 1

N
o

No. Of Flags Collected
. =
o w

0.5 1

—F— True
~J— 3x3 Tiling
—— 4x4 Tiling |
—F 5x5 Tiling
—F— 7x7 Tiling
—— 9x9 Tiling
—}— 10x10 Tiling

—— No Shaping |
T — I f

0.0

2000 4000 6000 8000 10000
Episode No.

(f) Low Connectivity Flag Collection domain

Figure 3: Reward graphs for each environment variation using different abstractions. Results shown are a moving average of
reward of the previous NumberO fEpisodes/10 episodes, with error bars denoting one standard deviation from the mean.

	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Abstract Markov Decision Processes
	2.3 Reward Shaping
	2.4 Abstract Reward Shaping With AMDPs

	3 Domain Experts and Knowledge Revision
	4 Experimental Domain
	5 Method
	5.1 Difference From Tile Coding

	6 Experimental Results
	7 Conclusion
	7.1 Future Work

	References

