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ABSTRACT
Among an array of techniques proposed to speed-up reinforcement

learning (RL), learning from human demonstration has a proven

record of success. A related technique, called HumanAgent Transfer

(HAT), and its confidence-based derivatives have been successfully

applied to single agent RL. This paper investigates their applica-

tion to collaborative multi-agent RL problems. We show that a

first-cut extension may leave room for improvement in some do-

mains, and propose a new algorithm called coordination confidence
(CC). CC analyzes the difference in perspectives between a human

demonstrator (global view) and the learning agents (local view), and

informs the agents’ action choices when the difference is critical

and simply following the human demonstration can lead to misco-

ordination. Experiments in two domains—one where the difference

in perspectives is critical, and one where it is not—investigate the

performance of CC in comparison with relevant baselines.

KEYWORDS
Multi-agent Learning; Reinforcement Learning; Learning fromDemon-

stration

1 INTRODUCTION
Reinforcement learning (RL) [10] has seen many successful applica-

tions, most recentlywith high visibility in Atari [8] andGo [9]. Some

of these applications, such as [9], exploit prior human experiences

in the form of initial knowledge. Due to the high sample complexity

of reinforcement learning, many speed-up techniques have been

proposed in the past, of which leveraging human demonstration

has indeed proved to be highly successful. One relevant recent

technique, called Human Agent Transfer (HAT) [12], is framed

as a transfer learning [11] technique. It allows a human (a source

agent) to demonstrate its policy, and a learner (the target agent) to

bootstrap its learning based on this policy. A major distinction of

this method from other work on learning from demonstration is

that a HAT learner seeks to eventually outperform the demonstra-

tor, rather than just to reproduce the demonstrator’s policy (as in

imitation, or apprenticeship learning).

Given the success of demonstration-based RL in single agent

settings, and HAT in particular, it is natural to ask to what extent

can this technique be used in a multi-agent RL setting? We are

particularly interested in framing collaborative multi-agent teams

within the HAT framework. There has been very little work on

training a team of autonomous agents from demonstration in the

past. RLaR [5] is a related approach, where rather than a complete

demonstration, an external entity (which could be a human) informs

the learning agents about the parts of their state spaces invisible to

them, enabling them to perform RL as a rehearsal, but the agents
must learn policies that do not rely on the invisible parts of their

states. In [3], similar on-line feedback is exchanged among the

agents themselves, but in this work we seek to limit any advice to

be an off-line prior.

One obvious dilemma with multi-agent learning from demon-

stration is regarding the size of the team trainable by human demon-

stration. On the one hand, it may be difficult for a single human to

demonstrate multi-agent control when the number of autonomous

agents in the team is large. On the other hand, requiring multiple

human demonstrators—each controlling one or a small number

of agents—delegates the question of agent coordination to that of

coordination among the human demonstrators themselves. How-

ever, for teams of small sizes, it may be quite easy for a human to

demonstrate effective coordination and help the team bootstrap

RL. Hence we focus on small teams in this paper. In particular, our

experiments are in 2-agent problem domains.

Another recent related work [6] seeks to exploit sports tracking

data as demonstration for coordinated multi-agent imitation learn-

ing. This scenario also has multiple demonstrators, but they play a

more passive role, and their coordination—often implicit in such

data, and modeled as a latent variable—is the target of inference.
As previously distinguished from the goal of imitation learning,

we seek to exploit the demonstration to enable our agent team to

eventually outperform the demonstrator team.

This paper investigates the following two questions. First, does

the advantage of HAT extend to multi-agent systems? In particular,

is a team of autonomous agents able to exploit human demonstra-

tion to bootstrap RL as much as a single agent? We show that,

compared to single agent HAT where the initial performance (and

often the asymptotic performance as well) of a HAT-agent is better

than an unbiased agent, the difference is dramatically more pro-

nounced in multi-agent HAT. In our experiments, the unbiased RL

agents were completely unable to learn the tasks, whereas with

multi-agent HAT, they were able to learn with a reasonable sample

complexity and even outperform the demonstrator. We ground this

investigation on two recent HAT methods: confidence based HAT

(CHAT) and dynamic reuse of prior (DRoP).

Second, given that the demonstrator’s global view of the task

state can differ from the individual agents’ (local) view of the state,

what impact does this difference have on the performance of multi-

agent HAT? In particular, agents following human demonstrations

with respect to their individual observations may select actions

different from what the human demonstrator would have picked

with a global view of all agents’ observations. We propose a novel

confidence based technique—Coordination Confidence (CC)—that
predicates the confidence of its action recommendations on this

difference, allowing the team to improve its learning rate in a do-

main where this difference is critical. Our experiment in a second

domain, where this difference is not critical, verifies that CC cannot



improve the learning rate in such cases, but it does not impact the

learning negatively.

2 BACKGROUND
This section discusses relevant background, including reinforce-

ment learning, learning from demonstration, and human-agent

transfer, and a recent advance to the latter.

2.1 Reinforcement Learning
Reinforcement learning problems are modeled as Markov Decision
Processes or MDPs [10]. An MDP is given by the tuple ⟨S,A,R, P⟩,
where S is the set of visible environmental states that an agent can

occupy at any given time, A is the set of actions from which it can

select one at a given state, R : S ×A 7→ R is the reward function, i.e.,

R(s,a) specifies the reward from the environment that the agent

gets for executing action a ∈ A in state s ∈ S ; P : S ×A× S 7→ [0, 1]
is the state transition probability function specifying the probability

of the next state in the Markov chain following the agent’s selection

of an action in a state. The agent’s goal is to learn a policy π : S 7→ A
that maximizes the sum of current and future rewards from any

state s , given by, V π (s0) = EP [R(s0,π (s0)) + γR(s1,π (s1)) + γ 2 . . .]
where s0, s1, . . . are successive samplings from the distribution P
following the Markov chain with policy π .

Reinforcement learning algorithms, bereft of any prior knowl-

edge of P or R, often evaluate an action-quality value function Q
given by Q(s,a) = R(s,a) +maxπ γ

∑
s ′ P(s,a, s ′)V π (s ′). This qual-

ity value stands for the sum of rewards obtained when the agent

starts from state s , executes action a, and follows the optimal policy

thereafter. Model free RL methods directly learn Q(s,a) by online

stochastic approximation, e.g., Q-learning [10]:

Q(s,a) ← Q(s,a) + α[r + γ max

a′
Q(s ′,a′) −Q(s,a)],

where r and s ′ are sampled from R and P respectively. The final

policy is calculated as

π (s) = arg max

a
Q(s,a). (1)

2.2 Learning from Demonstration
While often effective, RL can suffer from slow learning rates. One

way of learning faster is to re-frame the problem to that of mim-

icking a demonstrator. In this case, the agent typically solves a

supervised learning problem so that it can perform similarly to a

demonstrator [1]. While the majority of such such learning from
demonstration (LfD) methods assume there is only a single agent

learning, there are some methods [2] that allow the demonstrator

to provide demonstrations to individual agents in a multi-agent

setting. Additionally, LfD methods typically assume that the demon-

strator is near-optimal—even if there is an environmental reward

signal, LfD methods typically do not use it to improve the policy.

To speed up RL, there are many methods for incorporating biases

that can help an agent learn faster. One approach is to combine the

sample-efficient learning of LfD with the reward-seeking behavior

of RL, as discussed in the next section.

2.3 Human-Agent Transfer
Human-agent transfer (HAT) [12] reimagines demonstration based

learning from the perspective of transfer learning [11], where

knowledge gained from a prior task (often referred to as source

task) is used as inductive bias to bootstrap RL in a related but differ-

ent task (often referred to as target task). In lieu of a related source

task, HAT views the demonstration itself as initial bias (coming

from a source agent) that informs the RL’s action choices, but gradu-

ally weans RL off this bias as the RL’s own value function improves

over time. In particular, the idea of HAT, in a single agent context,

engages the following steps:

(1) Induce a supervised classifier with the demonstration, to

approximate the source agent’s policy πSource : S 7→ A.
(2) Bootstrap RL with the trained classifier, i.e., instead of acting

randomly as an RL agent would initially, use the classifier for

action selection, but only with a probability,Φ, that decreases
over time. Thus an ϵ-greedy RL agent would select action as

follows: select an action randomly with probability ϵ , select
the classifier’s predicted action with probability Φ, or select
action according to Equation 1 with probability 1 − Φ − ϵ .

Even though the demonstration may cover a small part of the

state space, with a sufficiently rich representation of states the

classifier’s capability of generalization can be effectively leveraged

to predict what the demonstrator’s actions might have been in

unseen states. Thus the classifier can serve as a powerful initial

bias for RL. Different types of classifiers have been used in the past,

e.g., decision trees, neural networks, and Gaussian processes [14].

Typically, an initial comparative analysis of different classifiers on

the available demonstration data can inform the choice of the most

appropriate classifier.

The above framework was originally introduced as probabilistic
policy reuse [12], where Φ is called the policy reuse parameter. More

recently, Wang and Taylor [14] leveraged the confidence in the

classifier predictions to decide whether to rely on its prediction, or

on RL’s value function, in a refined framework called Confidence

based HAT (CHAT). However, this framework still uses the policy

reuse parameter Φ, which typically starts close to 1 but decays

exponentially to enable the agent to rely more on its (increasingly

better) learned action value function over time. The choice of the

decay factor may pose a difficult tuning problem; too rapid decay

may make RL rely prematurely on its learned Q-values, resulting

sometimes in a temporary drop in performance and an associated

“valley” in the learning curve. On the other hand, if the decay in

Φ is too slow, then the performance of the learner, even when

mature, can be skewed in the learning curve by the classifier’s

own performance. To address this dilemma, Wang and Taylor [15]

introduced a new variant of confidence based HAT that does not

require explicit decay of the reuse parameter, described in the next

section.

2.4 Dynamic Reuse of Prior
The Dynamic Reuse of Prior (DRoP) algorithm [15] builds upon

HAT by adding an on-line confidence measure to the transferred

data. While the original DRoP paper includes two types of temporal

difference confidence measures and three types of action decision

models, we focus on one, each. In particular, step (1) in HAT, as

described in the previous section, is modified so that a confidence

measure of the classifier is learned (i.e., the classifier can output

both a label and a confidence for a given input). Step (2) is modified

as described next, and then summarized in Algorithm 1.

2



A confidence-based TDmodel is used to analyze the performance

level of every action source with respect to every state. The confi-

dence in the classifier of prior knowledge for a given state, CP(s),
is initialized to be the confidence of the classifier, and is updated

by the following equation over time

CP(s) ← (1 − α) ×CP(s) + α × [G(r ) + γ ×CP(s ′)] (2)

γ is the discount factor, r is the reward, and α is the update pa-

rameter. The reward is normalized
1
based on the confidence in the

different actions:

G(r ) = r

r_max
×max

{ 1∑
i exp(θTi · x)


exp(θT

1
· x))

exp(θT
2
· x))

...

exp(θTi · x))


}

(3)

where
r

r_max is a normalized reward (r_max denotes the maximum

absolute reward value) and G(r ) re-scales the reward using the

confidence distribution.

The confidence in the Q-value of a given state, CQ(s), is initial-
ized to be zero. It is updated over time via the following equation:

CQ(s) ← (1 − α) ×CQ(s) + α × [r + γ ×CQ(s ′)] (4)

We use a probabilistic action selection mechanism
2
:

AS =

{
Q P =

tanh(rCQ )+1

tanh(rCP )+tanh(rCQ )+2

Prior P =
tanh(rCP )+1

tanh(rCP )+tanh(rCQ )+2

(5)

so that a high confidence in prior knowledge makes following the

prior knowledge more likely, and a low confidence in the prior

knowledge makes it less likely.

Algorithm 1 DRoP

1: for each episode do
2: Initialize state s to start state

3: for each step of an episode do
4: if rand() ≤ ϵ then
5: a ← random action %Exploration

6: else
7: %Select Action source (AS) via Equation 5

8: if AS == Prior Knowledge then
9: a ← action from Prior Knowledge

10: Update CP via Equations 2 and 3

11: else
12: a ← action that maximizes Q
13: Update CQ via Equation 4

14: end if
15: end if
16: Execute action a, Observe new s ′ and r
17: Update Q via SARSA, Q-Learning, etc.

18: end for
19: end for

1
This is called the Dynamic Confidence Update method in the original DRoP paper.

2
This is called the soft decision model in the original DRoP paper.

3 HUMAN MULTI-AGENT TRANSFER
Humanmulti-agent demonstrations are collected as joint-state joint-

action vectors

〈
®s, ®a

〉
, where the state si of the ith agent in the team is

a feature vector over its local sensor data. Agents must learn to map

their own states to their own actions (πi : Si 7→ Ai ), therefore the
demonstration can be separated out agent-wise, and the ith agent

can be given its own portion of state-action demonstration, ⟨si ,ai ⟩,
to use as prior as shown in Figure 1. This is a straightforward

extension of HAT to a multi-agent setting. However, as we argue

below, this first-cut approach may not work well in some domains.

S1     S2   :   a1    a2
S2     S1   :   a1    a2
S1     S1   :   a2    a2
S2     S2   :   a1    a1
S1     S3   :   a2    a1

Demonstration

Agent 1 Agent 2

Induced Policies

Figure 1: The human-multi-agent transfer framework.

3.1 Difference in Perspectives
An important difference between the human demonstrator and the

agents is the difference in perspectives. In single agent LfD, the

human and the agent will perceive the task environment through

different sets of sensors, raising the question whether, or to what

extent, the policy of one is usable by the other. In a multi-agent

setting, this question is of magnified import. The demonstrator

usually sees the global state (i.e., the states of all agents in the team)

and demonstrates actions for all agents. However, each agent is

only capable of observing its own local state, and can only execute

its own actions. This scenario is depicted in Figure 1 for a two-agent

team. While the demonstrator records joint actions against joint

states, agents induce classifiers that map their individual states to

individual actions. In the example of Figure 1, the induced policies

will only be perfectly coordinated when the agents observe joint

state ⟨S2, S1⟩. For joint states ⟨S1, S1⟩ and ⟨S2, S2⟩, they will be mis-

coordinated 33% and 50% of the time respectively, but in joint state

⟨S1, S2⟩ they will be miscoordinated over 83% of the time! It seems

in the last case the agents are better off randomly exploring instead

of following the demonstrator’s recommendation. Notice that an

agent cannot infer such states (where the risk of miscoordination

is high) from its own classifier’s confidence alone. E.g., in state

⟨S2, S2⟩, even though agent 1’s classifier is fully confident about

recommending action a1, agent 1 will still be miscoordinated 50%

3



of the time, because it does not know agent 2’s state (and hence its

confidence at that step).

3.2 Coordination Based Prior
The key to solving the above problem is to note that the information

needed to predict when an agent might be more prone to misco-

ordination when following the human demonstration is already

present in the joint demonstration

〈
®s, ®a

〉
. Therefore we propose

to make the entire joint demonstration available to each agent, so

that each agent can perform an independent offline analysis that

can be used later to predict where the agent is more (or less) likely

to be miscoordinated with its teammates. This information can

be seen as an additional prior for each learning agent, apart from

the individual policy induced from the human demonstration. We

discuss the methodology in detail next.

4 COORDINATION CONFIDENCE
The collaborative team tasks constituting the focus of this paper

can be viewed as identical payoff games, where every agent in the

team receives the same reward. Joint actions that are coordinated

lead to higher values of the agents’ payoffs, while miscoordinated

joint actions lead to poor payoffs. The coordinated joint actions

form the Nash equilibrium [4] of the game, the highest valued

ones being Pareto dominant. While a Nash equilibrium assumes

a probabilistically independent choice of agent actions, when the

agent choices are somehow correlated, the resulting equilibrium—

called correlated equilibrium—can provide higher payoffs to the

agents in identical payoff games [4]. However, the latter requires

a correlation device—a signal that is commonly observed by the

agents. One view of our idea of coordination based prior is that

apart from the commonly observed reward, the joint demonstration

serves as an additional correlation device, observed as an offline

prior, but used online during RL. We speculate that this additional

correlation device may allow the agents to learn a higher valued

correlated equilibrium than those that do not have access to this

device. We now discuss how the agents distill this correlation device

into a confidence measure to bias independent RL.

4.1 Offline Analysis
Given the agent-specific demonstration, ⟨si ,ai ⟩, the ith agent trains

a classifier via supervised learning, Ci : Si 7→ ∆Ai , that returns a
confidence distribution over its actions. But since it also receives

the entire demonstration, it can also train such classifiers for other

agents j , i , Cj : Sj 7→ ∆Aj , as well as a single classifier that

maps a joint state to a confidence distribution over joint actions,

C : S 7→ ∆A. Then given a state si , the agent computes a confidence

measure, that indicates that if it follows its classifier then the agent

will be coordinated with the other agents, as

θ (si ) = 1 −
∑
sj ∈®s, j,i ∥ ⊗j Cj (sj ) − C(®s)∥2Nj,i

Mi
√

2

, (6)

where ⊗ is the Cartesian product, Nj,i is the number of times in

the full demonstration where the ith agent’s state was si while
the others’ state matched sj ,Mi is the number of times in the full

demonstration where the ith agent’s state was si , and
√

2 is the

required normalization factor for norm-2 distance between probabil-

ity distributions. Because

∑
sj Nj,i = Mi , and the maximum norm-2

distance between two probability distributions is

√
2, θ (si ) in Equa-

tion 6 is bounded in [0, 1]. At one extreme, if θ (si ) = 1, then agent i
can expect that if it uses Ci and other agents use their classifiers,

then their joint action will be perfectly coordinated. In other words,

the agent’s local view si of the joint state ®s is completely sufficient

for it to select the proper action. At the other extreme, θ (si ) = 0,

which means that if it uses Ci and other agents use their classifiers,

then their joint action will be perfectly miscoordinated. That is, the
agent’s local view si of the joint state ®s is insufficient; someone

with a global view of ®s would be able to select a coordinated joint

action where i’s portion ai was deterministically different.

Although the computation of θ (·) is lower bounded by Ω(|⊗iAi |),
which is exponential in the number of agents, it is performed offline

and hence the cost is amortized.

4.2 Online Use of Coordination Confidence
Let the states of agent i visited during the demonstration form

the subset SDi ⊂ Si . During explorative reinforcement learning,

the agent will potentially visit many other states not seen by the

demonstrator. Rather than training an inductive regressor to predict

θ for such states, we apply transductive or instance-based prediction.
For a state si ∈ Si \ SDi , we optimistically predict

¯θ (si ) = max{θ (s ′i )|s
′
i ∈ Σsi },

Σsi = {s ′i |d(si , s
′
i ) ≤ d(si , s

′′
i ) ≤ ϵ,∀s ′i , s

′′
i ∈ S

D
i }

(7)

where d is a feature distance measure. In words, among all of agent

i’s states in the demonstration that are closest (by distance measure

d) to si but not farther than ϵ , ¯θ optimistically selects the highest

θ confidence using Equation 6. Depending on the choice of ϵ , Σsi
could be empty for some si , in which case

¯θ is set to 0. This online

computation is O(|SDi |
2), hence a constant for a fixed amount of

demonstration. Algorithm 2 shows the CC-Agent algorithm, which

opts for coordination confidence when it is high, but otherwise falls

back on CHAT (or Q when CHAT’s confidence is low).

5 EXPERIMENTAL EVALUATION
Weuse two domains for experimental evaluation: FurnitureMovers [2]

and Block Dudes. We describe these domains in the following sub-

sections, and present the experimental results alongside. In all ex-

periments, we used random forests as the classifier because of its

improved accuracy in both domains compared to other classifiers re-

ported in previous literature. The result of this preliminary analysis,

performed in Weka 3.8.1 is shown in Table 1.

Table 1: Classifier accuracies by F-Measure averaged over 10-
fold cross validation, performed on human demonstration
in Furniture Movers (FM) and Block Dudes (BD). All experi-
ments used the default parameters in Weka.

Decision Neural Gaussian Random

Tree Network Process Forest

FM 94.4% 93.3% 94.8% 96.6%

BD 89.3% 81.1% 90.2% 90.8%

4



Algorithm 2 CC_Agent_i(conf_threshold)
1: Get local state si
2: if rand()≤ Φ then
3: if ( ¯θ (si ) ≥ conf_threshold) then
4: %Use Coordination Confidence

5: ai ← arg maxaction Ci (arg maxs ′i ∈Σsi
¯θ (s ′i ))

6: Note whether this action is same or different from CHAT

action

7: else if (maxCi (si ) ≥ conf_threshold) then
8: %Use CHAT action

9: ai ← arg maxaction Ci (si )
10: else
11: ai ← arg maxa Q(si ,a)
12: end if
13: else
14: if rand()≤ ϵ then
15: ai ← random action

16: else
17: ai ← arg maxa Q(si ,a)
18: end if
19: end if
20: Execute ai , get reward r , and update Q using the next state

Figure 2: Furniture Movers domain from [2].

5.1 Furniture Movers
5.1.1 Domain Description. The Furniture Movers domain is

shown in Figure 2, adopted from [2]. First we give the description

of this domain from [2], and then specify the changes we made.

Two agents are jointly tasked with moving a long and heavy

piece of furniture from the room on the left to the one on the right,

through a narrow corridor which also has a staircase. Each agent has

a set of six range sensors as shown, each giving it a noisy reading of

the nearest obstacle in that direction. An agent can also sense the

stairway, but only when next to (or on) it. An agent can move in one

of the four cardinal directions, or execute a “stair” action. Agents

can successfully navigate the stairway only when both execute the

“stair” action (though bothmay not see it simultaneously), otherwise

they stay stuck. Furthermore, joint actions that make the agents

lose their grip on the furniture (e.g., moving in opposite directions)

also do not change their locations. Apart from the five actions, an

agent can also execute a communicate action to inform the other

if it sees the stairs, to enable coordination for joint “stair” action.

Thus the state feature vector of each agent has, in addition to the

6 range sensor measurements, two binary stair features, one for

its own location and one for its teammates’. The teammate’s stair

feature can only be updated via the communicate action from the

other. As in [2], the movements of the agents are discretized, and

the task can be completed optimally in 39 steps, indicating that the

joint start and goal locations were fixed.

We made the following changes to this domain:

• As movements are discretized, we allow each agent to move

in any of the eight directions, rather than four. This expands

the action space of each agent, making the joint learning

problem even more challenging for independent Q-learners,

especially without any prior.

• We select the joint start locations randomly within the left

room, and the joint goal location is set to anywhere in the

right room. That is, agents can start anywhere in the left

room, both holding the furniture at its opposite ends, and as

soon as both are located anywhere in the right room (again

both holding the furniture) we say that the episode has ended

successfully. These settings were the same for the human

demonstrator, as for the experiments.

• We introduced 10% action noise for joint actions, that is,

agents’ joint actions are changed randomly 10% of the time

after they have selected their actions, but before the actions

are executed in the environment. However, the changed ac-

tions are not allowed to include communicate. The purpose
of this noise is to create variations in the demonstrated tra-

jectories, since the demonstrator could otherwise follow a

fixed trajectory after the agents have successfully entered

the narrow corridor.

• We set the reward function to be -1 for all actions, except the

joint action that ends the episode successfully, which has a

reward of +100 for each agent.

5.1.2 Experimental Results in Furniture Movers. Because of the
first three changes, the optimal episode length is different from 39,

and only fixed in expectation. The task is extremely challenging to

independent Q-learners (IQL) with no prior, to the extent that they

are completely unable to learn, with all learning episodes being

capped at 200 steps, as shown in Figure 3. This figure shows the cu-

mulative average of the discounted episode returns obtained by the

learners, with each plot point being averaged over 32 independent

trials. Each agent used ϵ = 0.05, γ = 0.999, and α = 0.005; CHAT

and CC used a confidence threshold of 0.7, and a Φ decay rate of

0.999977. With an experiment horizon of 1.5 × 10
5
episodes, this

decay rate reduces Φ to ≈ 0.03. Figure 3 shows that in contrast with

IQL, all three versions of HAT are able to learn this task, CC outpac-

ing CHAT and DRoP at a statistically significant rate. Furthermore,

Table 2 shows the initial and learned episode lengths (average of

first 20, 000 and last 20, 000 episode lengths, respectively) of these

three algorithms in this task, together with the demonstrator’s

performance for comparison. Here we see that CC has a higher

jumpstart (difference in initial performance, from no-prior IQL)

than CHAT and DRoP, but all three algorithms ultimately learn to

perform similarly. Note that they learn to outperform the human

demonstrator.

In order to further investigate the performance improvement of

CC over CHAT, we scrutinized the action choices of Algorithm 2,

particularly how often it selected actions by coordination confi-

dence (line number 5), CHAT (line number 9), or Q (line numbers 11,

17). Furthermore, when Algorithm 2 chose an action recommended

by coordination confidence, we also compared them to those that

5



Table 2: Summary of episode lengths (lower is better) in Fur-
niture Movers (FM) and Block Dudes (BD). Total learning
episodes were 1.5 × 10

5 and 3.0 × 10
6 respectively.

Human CHAT CC DRoP

FM Initial 42 ± 7.6 101 ± 5 88 ± 3.7 109 ± 4.8

FM Learned - 34.7 ± 0.76 34.4 ± 0.63 34.6 ± 0.36

BD Initial 87 ± 20.6 80.3 ± 3.7 82.2 ± 1.4 108.6 ± 3.1

BD Learned - 39.9 ± 0.5 39.3 ± 0.3 48.2 ± 2

-190

-180

-170

 0  20000  40000  60000  80000

Training Episodes

IQL-20

 0

 20

 40

 60

R
e

tu
rn CC

CHAT
DRoP

Figure 3: Learning curves in Furniture Movers. Episode
lengths were capped at 200 steps, which IQL always reached.

CHATwould recommend, i.e., whether the recommendationswould

have differed from CHAT (line number 6). Figure 4 shows the result

of this experiment, with a moving window average over a window

size of 20000 episodes, averaged over 32 trials. Clearly, the CC-

Agent leverages coordination confidence much more often than the

CHAT confidence. Also notice the high frequency of CC != CHAT,

which stands for the action choices that are solely attributable to

coordination confidence, and are distinct from CHAT’s classifier.

Although this rate tapers off due to Φ decay (as do the other rates,

while the rate of Q-value utilization replaces them), the distinct

action choices prompted by coordination confidence explains the

superior jumpstart and learning rate of CC-Agent. Figure 4 shows

the actual action counts, thus the sum of the counts at any episode

is also close to the episode length (sans the ϵ exploration).

Figure 5 shows the action choice frequency of DRoP due to

various sources of confidence: CC, CHAT, or Q; with a moving

window average over window size of 20000 episodes, averaged

over 32 trials. Since DRoP does not decay the rate of prior usage,

we see that all three sources continue to be used (with Q being

slightly dominant for the most part), although overall rates fall

because learning shortens the episodes, reducing the number of

actions chosen. Also notice that CC (i.e., CC = CHAT + CC !=

CHAT) does not clearly dominate CHAT as a source, unlike in

Figure 4, which means that DRoP is unable to leverage the unique

information conveyed by coordination confidence, which would

explain why it performed similarly to CHAT, and underperformed

in Figure 3. Finally, Figure 6 shows the actual values of confidence

from different sources for DRoP, verifying that Q is indeed mostly

dominant as a source.
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Figure 7: Block Dudes domain.

5.2 Block Dudes
5.2.1 Domain Description. We introduce a new challenging do-

main for cooperative multi-agent planning and learning, called

Block Dudes. It is based on a TI calculator puzzle concept as imple-

mented in BURLAP [7], but with two agents instead of one. The

initial state is depicted in Figure 7. The agents, marked A1 and A2

(blue, with an eye showing its current heading), are located in some

landscape, along with three blocks (gray). The goal of agent i is to
reach the cell marked Gi (black). The initial configuration is such

that the agents are incapable of reaching the goal without using the

blocks. Furthermore, the world is two dimensional, so the agents

cannot pass each other, or co-occupy any cell. Thus the quickest

way for the agents to reach their goals is to cooperate and pass

blocks from right to left to stack at the bottom of the cliff, creating

a stairway to climb up to their goals.

Each agent is only capable of local sensing, to know its own

location, heading, and whether it is currently carrying a block.

Further, an agent can sense the features of the other agent when

within a horizontal distance of 4, but not otherwise. However, we

found that merely local sensing of the blocks made independent RL

difficult, therefore following the implementation in BURLAP we

made all blocks visible to both agents at all times. Note that this

allows an agent to infer the location of the other agent if the latter

is carrying a block, even when they are farther apart than 4 units.

An agent’s action space contains 5 actions: east, west, up, pickup,
putdown. The directional actions, east and west, either changes the
heading of the agent, or progresses it one step in the direction of

its heading, as long as this is allowed by the terrain. The action up
allows the agent to climb up a block (irrespective of whether or not

it is carrying a block) that is in front of it and at the same level. The

actions pickup allows the agent to pickup a block that is in front of

it and at the same level; putdown allows it to drop a block that it is

carrying as long as the height of the terrain in front of the agent is

no larger than the height of the agent. As with our modification of

Furniture Movers, we added 10% joint action noise, but there is no

sensor noise.

The variance of the demonstrator in Block Dudes was high (see

Table 2) because certain action choices (either by mistake, or by

action noise) can lead to dramatically different trajectories. For

instance, if A2 drops a block at the edge of a step, then A1 will

neither be able to pick it up, nor be able to climb over, because

in either case it needs to be at the same level as the block. This

necessitates a costly detour where A1 goes back to grab the left-

most block and use it to regain access to the inaccessible block.

While the human demonstrator was repeatedly frustrated by such

unexpected calls for replanning, the learners were able to minimize

them (evident from their low variance) e.g., by dropping blocks

early. Some demonstrations ended in failure because the blocks had

been configured in ways that made it impossible to achieve the joint

goal. Such demonstrations were discarded. In the end, 11 successful

demonstrations were collected. The human demonstrator found

this task challenging because of unforeseen variations, but also

frustrating because noise often preempted future plans.

5.2.2 Experimental Results in Block Dudes. The reward function
in this domain is similar to Furniture Movers: +100 to each agent

only when both agents are in their respective goal cells, -1 for all

other situations. Because this domain appeared challenging, we

reduced the learning rate to α = 0.001, and slowed the Φ decay

rate to 0.9999992, but kept the other parameters ϵ,γ unchanged

from Furniture Movers. When reporting performances with win-

dowed averages, we raised the window size from 20,000 in Furniture

Movers to 50,000 in this domain, and ran our experiments for 3×10
6

episodes with 32 trials. Notice the Φ decay is slower here due to the

increased experiment horizon; Φ decays to ≈ 0.09. Despite the slow

decay of Φ, the ‘valley’ mentioned in Section 2.3 still appeared in

the learning curves in Figure 8, exhibiting the difficulty of tuning

this parameter with the learning rate.
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Figure 8: Learning curves in Block Dudes domain. Episode
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It is noteworthy in Figure 8 that CC does not have a statistically

significant advantage over CHAT in this domain, but DRoP out-

performs both in learning rate, and does not exhibit the ‘valley’

characteristic of other algorithms that depend on a decaying prior

reuse rate. However, its asymptotic performance is lower than CC

or CHAT. As with Furniture Movers, IQL fails to learn once again.

The reason why coordination confidence fails to improve perfor-

mance over CHAT is that the agents in Block Dudes are far more

independent and less reliant on coordination, i.e., they are weakly
coupled. In fact, most of the time, agents can execute their own

policies without regard to what the other agent is doing at that

time. The agents only need to coordinate their actions when they

are in close proximity, but in these cases their individual states

contain the features of the other (visible) agent, thus giving them

sufficient information to select a coordinated action. The differ-

ence in perspectives between local states and global states becomes

irrelevant, therefore the CC-Agents show the same performance

as CHAT. This intuition is verified in Figure 9, which shows that

the action frequency for cases that are distinct from CHAT (CC !=

CHAT) are practically 0. Also, in contrast with Figure 4, the action

frequency of CHAT is dominant in Figure 9, indicating that the test

in line 3 of Algorithm 2 fails frequently, verifying the low utility

of coordination in this domain. Transfer learning approaches [13]

designed for such sparse interaction domains might yield better

results in Block Dudes.

Finally, Figure 10 shows the action choices of DRoP due to the

three sources, CC, CHAT and Q. In contrast with Figure 5, the HAT

sources dominate initially, with the learned Q function eventually

exploited more often. But the initial dominance of HAT sources

explains the improved learning rate of DRoP.

6 CONCLUSION
We have verified via experiments in two domains that Human-

Agent Transfer (HAT) when extended to multi-agent RL, is indeed

advantageous for agents to bootstrap RL, but to a greater extent

in multi-agent systems than in single agent RL as studied in the

past. While it imparts a jumpstart and improves the learning rate

in single agent systems, multi-agent systems may be completely

unable to learn without demonstration.

We have proposed a method to measure the degree of confidence

that agent teams can have regarding coordination in demonstrated

data, and leverage this confidence for action selection. We have

found that this information can be advantageous in a tightly coupled

domain where agents need to coordinate often, but their individual

local states may not correlate strongly with the global state. On

the other hand, in weakly coupled domains, where agents need to

coordinate infrequently, and when they do, their individual local

states are strongly correlated with global states, this confidence

does not provide any added advantage.

We have also verified the difficulty of parameter tuning for the

decay of prior reuse rate in HAT derivatives, and that a recently

proposed technique to avoid this tuning in single-agent systems,

called DRoP, can indeed avoid the “valley” in learning curves in

multi-agent learning. This can result in faster learning for the team.

However, we found that DRoP may not achieve similar jumpstart as

CHAT or CC, which may call for a more informed way to initialize

the confidence values of various sources of priors in DRoP.
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