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ABSTRACT

Reinforcement learning methods require careful design involving a
reward function to obtain the desired action policy for a given task.
In the absence of hand-crafted reward functions, prior work on the
topic has proposed several methods for reward estimation by using
expert state trajectories and action pairs. However, there are cases
where complete or good action information cannot be obtained from
expert demonstrations. We propose a novel reinforcement learning
method in which the agent learns an internal model of observation
on the basis of expert-demonstrated state trajectories to estimate
rewards without completely learning the dynamics of the external
environment from state-action pairs. The internal model is obtained
in the form of a predictive model for the given expert state distribu-
tion. During reinforcement learning, the agent predicts the reward
as a function of the difference between the actual state and the state
predicted by the internal model. We conducted multiple experiments
in environments of varying complexity, including the Super Mario
Bros and Flappy Bird games. We show our method successfully
trains good policies directly from expert game-play videos.
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1 INTRODUCTION

Reinforcement learning (RL) [29] enables an agent to learn the de-
sired behavior required to accomplish a given objective, such that
the expected return or reward for the agent is maximized over time.
Typically, a scalar reward signal is used to guide the agent’s behavior
so that the agent learns a control policy that maximizes the cumula-
tive scalar reward over trajectories. This type of learning is referred
to as model-free RL if the agent does not have an apriori model or
knowledge of the dynamics of the environment it is acting in. Some
notable breakthroughs among the many recent research efforts that
incorporate deep models are the deep Q-network (DQN) [16], which
approximated a Q-value function used as a deep neural network and
trained agents to play Atari games with discrete control, the deep de-
terministic policy gradient (DDPG) [14], which successfully applied
deep RL for continuous control agents, and the trust region policy op-
timization (TRPO) [26], which formulated a method for optimizing
control policies with guaranteed monotonic improvement.
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In most RL methods, it is critical to choose a well-designed re-
ward function to successfully ensure that the agent learns a good
action policy for performing the task. Moreover, there are cases
in which the reward function is very sparse or may not be directly
available. Humans can often imitate the behavior of their instruc-
tors and estimate which actions or environmental states are good
for the eventual accomplishment of a task without being provided
with a continual reward. For example, young adults initially learn
how to write letters by imitating demonstrations provided by their
teachers or other adults (experts). Further skills get developed on
the basis of exploration around this initial grounding provided by
the demonstrations. Taking inspiration from such scenarios, vari-
ous methods have been proposed, which are collectively known as
imitation learning [8, 9] or learning from demonstration [25]. In-
verse reinforcement learning [1, 18, 34], behavior cloning [24], and
curiosity-based exploration [22] are also examples of research in
this field. Typically, in all these formulations, expert demonstrations
are provided as input.

The majority of such prior work assumes that the demonstrations
contain both states and actions {(sé, a(")), - (s;, ai)} and that these
can be used to solve the problem of having only a sparse reward
or a complete lack thereof. However, there are many cases in real-
world environments in which such detailed action information is not
readily available. For example, a typical schoolteacher does not tell
students the exact amount of force to apply to each of their fingers
while they are learning how to write.

As such, in this work, as our primary contribution, we propose a
reinforcement learning method in which the agent learns an internal
predictive model that is trained on the external environment from
state-only trajectories by expert demonstrations. This model is not
trained on both the state and action pairs. Hence, during each RL
step, this method estimates an expected reward value on the basis
of the similarity between the actual and predicted state values by
the internal model. Therefore, the agent must learn to reward known
good states and penalize unknown deviations. Here, we formulate
this internal model as a temporal-sequence prediction model that
predicts the next state value given the current and past state values
at every time step. This paper presents experimental results on mul-
tiple environments with varying input and output settings for the
internal model. In particular, we show that it is possible to learn
good policies using an internal model trained by observing only
game-playing videos, akin to the way we as humans learn by ob-
serving others. Furthermore, we compare the performance of our



proposed method regarding the baselines of hand-crafted rewards,
prior research efforts, and other baseline methods for the different
environments.

2 RELATED WORK

In RL, an agent learns a policy 7 (a;|s;) that produces good actions
from the observation at the time. DQN [16] showed that a Q-value
function q(s¢, a;) can be successfully approximated with a deep
neural network. Similarly, actor and critic networks in DDPG can
enable continuous control, e.g. in robotic manipulation by minimiz-
ing a distance between the robot end-effector and the target position.
Since the success with DDPG, other methods, such as TRPO [26]
and proximal policy optimization (PPO) [27] have been proposed
as further improvements for model-free RL regarding continuous
control.

Although RL enables an agent to learn an optimal policy in the
absence of supervised training data, in a standard case, it involves
the difficult task of hand-crafting good reward functions for each
environment [1]. Several kinds of approach have been proposed to
work around or tackle this problem. An approach that does not re-
quire hand-crafted rewards is behavior cloning based on supervised
learning instead of RL [24]. It learns the conditional distribution of
actions from given states in a supervised manner. Although it has
an advantage of fast convergence [8] (as behavior cloning learns a
single action from states during each step), it typically results in the
compounding of errors in future states.

An alternate approach, inverse reinforcement learning (IRL), was
proposed [18]. In this work, the authors tried to recover the reward
function as the best description of the given expert demonstrations
from humans or expert agents using linear programming methods.
This was based on the assumption that expert demonstrations are
solutions to a Markov Decision Process (MDP) defined by a hid-
den reward function [18]. It demonstrated successful estimation
of the reward function regarding relatively simple environments,
such as a grid world and the mountain car problem. Extending [18],
entropy-based methods that compute a suitable reward function by
maximizing the entropy of the expert demonstrations have been
proposed [35]. In another paper [1], a method was proposed for
recovering the cost function on the basis of expected feature match-
ing between observed policies and agent behavior. Furthermore, the
research showed that it is necessary for the agent to imitate the be-
havior of the expert. Another use of the demonstrations is it was
used for initializing the value function [33].

Recently, there were some studies that extended such framework
using deep networks as non-linear function approximators for both
the policies and the reward functions [34]. In another relevant pa-
per [9], the imitation learning problem was formulated as a two-
player competitive game in which a discriminator network tries to
distinguish between expert trajectories and agent-generated trajec-
tories. The discriminator is used as a surrogate cost function which
guides the agent’s behavior to imitate the expert’s behavior by up-
dating policy parameters on the basis of TRPO [26]. Recent related
work also includes model-based imitation learning [3] and robust
imitation learning [32] using generative adversarial networks. It can
be argued that our method is similar to the reward shaping method
proposed by [5] because both methods calculate the similarity of

demonstrations as a reward shaping function. However, while their
paper dealt only with discrete action tasks, we show a similar ap-
proach can be applied to continuous action tasks I Moreover, all the
above-mentioned methods rely on both state and action information
provided by expert demonstrations.

Another recent line of work aimed at learning useful policies for
agents even in the absence of expert demonstrations. In this regard,
they trained an RL agent with a combination of intrinsic curiosity-
based reward and hand-engineered reward that had a continuous
or very sparse scalar signal [22]. The curiosity-based reward was
designed to have a high value when the agent encountered unseen
states and a low value when it was in a state similar to the previously
explored states. The paper reported good policies in games, such as
Super Mario Bros. and Doom, without any expert demonstrations.
Here, we also compared our proposed method with the curiosity-
based approach and demonstrated better-learned behavior. However,
as a limitation, our method assumed that state demonstrations were
available as expert data.

Also, there is a work that estimate the reward from linear func-
tion [28]. However, they evaluated by simple task; specifically, they
used 27 discrete state-variables for Mario. On the other hand, our
method is using the non-linear model.

At the same time as this work, a recent paper [30] proposed learn-
ing policies using behavior cloning method based on observations
only. Unlike that work, here we put primary focus on reward shaping
based on internal model from observation data.

3 PROPOSED METHOD
3.1 Problem Statement

We considered a MDP consisting of states S and action spaces A,
where the reward signal, r : S X A — R, was unknown. An agent
acted in an environment defined by this MDP following a policy,
7 (at|st). Here, we assumed to have knowledge of a finite set of
expert state trajectories, 7 = {So, ...,S™}, where St = {s(‘;, ...,s:',,}.
These trajectories represented joint angles, raw images, or others
depicting environmental states.

Since the reward signal was unknown, our primary goal was to
find a reward signal that enabled the agent to learn a policy, 7, that
could maximize the likelihood of these sets of expert trajectories, 7.
In this paper, we assumed that the reward signal could be inferred
entirely on the basis of the information of the current and following
states, 7 : S X & — R. More formally, we wanted to find a reward
function that maximized the following objective:

r* = argmax B (s, ,, |s;)7 (St +15¢), (1)
r

where r(s¢+1]s¢) is the reward function of the next state on the
basis of the current state and p(s¢+1|s¢) is the transition probability.
‘We hypothesized that maximizing the likelihood of the next step
prediction in Eq. 1 resulted in increasing future rewards. This is
because the likelihood was based on the similarity of current state
values with the demonstrations obtained using the expert agent,
which inherently chooses actions that would maximize their expected
future reward. As such, we assumed the agent maximized the reward

"Please note that they used a different version of the Mario game from that used in this
paper.



when it took the action that changed to a similar step value with
given states from the expert.

3.2 Training the Internal Model

Letr = {sf }i=1:M, s=1:N be the expert states obtained by the expert
agent, where M is the number of demonstration episodes and N is
the number of steps within each episode. We trained the internal
model to predict reward signals on the basis of the expert state
trajectories, 7, which in turn were used to guide a reinforcement
learning algorithm and learn a suitable policy.

A simple straightforward idea (baseline) for an internal model is
to use a generative model of the state value, sf, to understand the
7. The model trains a distribution of the state values, from which
a predicted reward can be estimated on the basis of a similarity
between the reconstructed state value and the actual experienced
state value. This method constrains exploration to the states that have
been demonstrated by experts and enables learning a policy in a way
that closely matches that of the expert. However, the temporal order
of states is ignored or not readily accounted for, and the temporal
order of the next state in the sequence is important for estimating
the state transition probability function.

Therefore, our proposed method uses a recurrent neural net-
work (RNN)-based temporal-sequence model as an internal model
that can be trained to predict the next state value given current and
previous states on the basis of the expert trajectories. Such RNN
temporal-sequence prediction models have been used successfully
in the past as internal forward models in the context of grammar
learning and robot behavior prediction [2, 7]. Here, we trained a
deep temporal sequence prediction model as the internal model by
using the given state values, s:, and the next state values, s;' e from
the expert demonstration trajectories, r. The model was trained to
maximize the likelihood of the next state, such that the objective
function for the model was:

M N
6* = argmin [ =N logpsiyIsk:0)] @)
0 i=1 t=1

where 6* represents the optimal parameters of the internal model.
We also assumed the probability of the next state given the previous
state value, p(s;' +1 |sf; 0), to be a Gaussian distribution. As such, the
objective function could be seen as minimizing the mean square
error, ||s;'+1 - 9(s§)||2, between the actual next state, sl’;H, and the
predicted next state, 9(31'; ).

3.3 Reinforcement Learning

During the reinforcement learning, the method predicts a reward
value with the trained internal model. The value is estimated as a
function of the similarity between an actual next state value, s¢+1,
and the predicted next state value, 6(s;), given the current state
value, s¢. Thus the reward function is formulated as:

re = =p(llst-1 - 0(s)11), 3)

where ¢ is a function that reshapes the reward structure. In this paper,
we tried a normal linear function, a hyperbolic tangent function, and
a Gaussian function as the i function. In this formulation, if the
current state was similar to the predicted state value, the estimated

Algorithm 1 Reinforcement Learning with Internal Model

1: procedure TRAINING DEMONSTRATIONS
2: Given trajectories T from expert agent
. i
3 fors;,s; , €t do
4 0" — argming | — 3; ; logp(s;,Is;:6)
5 end for
6: end procedure
7: procedure REINFORCEMENT LEARNING
8 fort=1,2,3,...do
9 Observe state sy

10: Execute action a;, and observe state s¢ 11
0 i =9 (llse 1 - OGso)ll

12: Update network 2 using (s¢, a¢,re, S¢+1)
13: end for

14: end procedure

Environment Input Action RL

Reacher joint angle  continuous DDPG

Mover w/ obstacle  pos., dist3  continuous DDPG
Flappy Bird image, pos. discrete DQN
Super Mario Bros. image discrete A3C

Table 1: Comparison of different environments.

reward value was high. However, if the current state was not similar
to the predicted state, the reward value was low. Moreover, as the
reward value was estimated at each time step, this approach could
predict dense rewards even regarding problems in which the original
hand-crafted reward had a sparse structure.

Algorithm 1 explains the flow of the method. The RL procedure
is shown as part of a generic RL pipeline and can be implemented
with most on- or oft-policy RL algorithms. In this paper, we used
DDPG and DQN RL algorithms.

4 EXPERIMENT

We conducted experiments across a range of environments. We
prepared four different tasks with varying complexity, namely, con-
trolling a robot arm so that the end-effector reaches a target position,
controlling a point agent to move to a target point while avoiding an
obstacle, sending commands to a bird agent for the longest flight in
the Flappy Bird video game, and controlling the Mario agent to max-
imize a total travelled distance in the Super Mario Bros video game.
Table 1 summarizes the key differences between the experiments.

4.1 Reacher

We considered a two degree of freedom (2-DoF) robot arm in an
x-y plane that has to learn to make the end-effector reach a target
position. The first link of the robot was rigidly connected to the (0, 0)

2The parameter updates are carried out following the standard procedure of the specific
reinforcement learning (on-policy or off-policy) algorithm.
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point, and the second link connected to an edge of the first link. It had
two joint values: 0 = (01, 62), 61 € (—o0,+00) and 0, € [—m, +7],
and the lengths of the links were 0.1 and 0.11, respectively. The pa
is end point of the first link, and the pe. is the end-effector position
of two links. The joint values and a target position were initialized
by random values at the initial step of each episode. Specifically, the
x and y of target position, p¢g¢, were set from a random uniform
distribution of [—0.27, +0.27]. The applied continuous action value,
a;, was used to control the joint angles, such that 6 = 0.05 a;. Each
action value was clipped within the range of [—1, 1]. The state vector,
s¢, consisted of the following variables: an absolute end position of
the first link (p2), a joint value between the first link and the second
link (62), velocities of the joints (61, 62), and an absolute target
position (p¢ g¢ ). We used the roboschool environment with built-in
physical dynamics [4, 19] for this experiment. Figure 1 illustrates
the used environment. The robot links are in blue, the green point is
the end-effector, and the red point is the target location.

We used the DDPG algorithm [14] to train the RL agent. The
actor and critic-network had 400, 300 fully-connected (FC) neuron
layers, respectively. The output from the final layer of the actor
was passed through a tanh activation function while others passed
through the ReLU [17] activation function. The exploration policy
was an Ornstein-Uhlenbeck process [31], the size of replay memory
was 1 million steps, and we used the Adam optimizer [12] for the
stochastic gradient updates. The number of steps for each episode
was set to 400 in this experiment. All implementations were done
using the Keras-rl [23] and Keras [6] libraries. Here, we compared
the following reward functions:

3“pos.” implies position, and “dist.” implies distance.

Hand-crafted dense reward:

rt = —llpee — prgtllz +r{"° “
Hand-crafted sparse reward:

rt = =100 tanh(||pee —Ptgt ll2) + r;:n‘u )]
Predictive model (PM, with state-action pair):

re = —10tanh(l|st +1 — O+a(se, ap)llz) + r{™° (6)
Generative model (GM, baseline):

ry = —tanh(|[sf+1 — Og(s+1)ll2) +r{™° (7
Proposed method:

re = —10tanh(||sp+1 — O(s¢)ll2) + 7§ )

enov

where r{"? is an environment specific reward, which is the cost
for current action, —||a¢||2. This regularization was required to
find the shortest path to reach the target. The expert demonstra-
tions, 7, had 2000 episode trajectories by running a trained agent.
The model, 8,4, used both state-action pairs to estimate the reward
function, ||s;'+1 —9+a(s;', ai )2, where s;' and ai were obtained from
demonstrations. Our proposed internal model was not required such
action information ai. The proposed method was constructed using
long short-term memory (LSTM) [10] as with the temporal sequence
model. The model had two 128-unit LSTM layers with tanh activa-
tion and a 40-unit FC layer with ReL U activation. Furthermore, we
also compared it with a standard behavior cloning (BC) [24] proce-
dure, which used the actor-network directly trained with state-action
pairs from expert demonstrations.

Figure 2 shows the performance of the agents. In all cases, using
internal-model-based rewards gave better results than having sparse
rewards. Moreover, the model-based learning curves started from a
better initial point compared to the dense reward curve. As observed,
our proposed method achieved the best results when compared with
all the baseline methods and also nearly achieved the results ob-
tained in the dense reward case. As expected, the GM failed to work
well in this complex experiment. The PM model with state-action
information also performed poorly. However, in comparison, the BC
method worked relatively well. This is not surprising and clearly
indicates that it is better to use behavior cloning than reward pre-
diction when both state and action information are available from
expert demonstrations.

4.2 Mover with Obstacle

In this task, we developed a new environment which has position
control and an obstacle. The task was to move toward a target po-
sition without colliding with the obstacle. Figure 3 illustrates the
environment setup. The initial position of the agent, the target posi-
tion, and the obstacle’s position were initialized randomly. The state
vector, s¢, contained the following variables: the agent’s absolute
position (p¢), the current velocity of the agent (p¢), the target po-
sition (p¢g¢ ), the obstacle’s position (p,p ), and the relative target
and obstacle location regarding the agent (pt —ptgt, Pt —Pops)- The
RL algorithm used was DDPG [14]; the actor and critic networks
had 64 and 64-unit FC layers, and each layer had a ReLU activation
function. The exploration policy was the Ornstein-Uhlenbeck pro-
cess [31], the size of the replay memory was 500 thousand, and the
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optimizer was Adam. The number of steps for each episode was set
to 500.

Here, we tried predicting a part of the state that is related to a given
action, thus taking the relevance into account. In former work [22],
the authors predicted the function of the next state, ¢(s¢+1), rather
than predicting the actual value, s¢+1. In this experiment, we chose
the agent position, (p¢), as the selected state value. Furthermore,
we changed the non-linear function, ¢, to a Gaussian function. This
allowed us to compare the robustness of our proposed method when
using different non-linear functions. Here, we used the following
reward functions:

Hand-crafted dense reward:

re = =pt = prgtllz + 1Pt — Popsl2 )
Proposed method (predict next state values):

re = exp(=lls¢+1 — 0(st)ll2/207) (10)
Proposed method (predict only next agent position):

re = exp(=lisyq = 0’ (se)ll2/203), (1)

where s; is the agent’s position, 0" is an internal network that pre-
dicts a selected state §;, o1 1s 0.005, and o7 is 0.002. The dense
reward was composed of both the target distance cost and an obsta-
cle distance bonus. The expert trajectories, z, contained 800 human-
guided demonstration data with only state values; therefore, behavior
cloning could not be directly applied. The internal prediction model
once again used an LSTM network that consisted of two 256-unit
LSTM layers with ReLU activations.

Figure 4 shows the performance obtained with the different re-
ward settings. As observed, the proposed internal model learned
to reach the target faster than the dense reward. Using the agent’s
position prediction internal model achieved the best performance.

4.3 Flappy Bird

In this experiment, we used a re-implementation [13] of the “Flappy
Bird” game. The objective of this game is to make the agent pass
through as many pipes as possible without collision. The control is a
single discrete command of whether to flap the bird’s wings or not.
The RL state value had four consecutive gray frames (4 x 80 x 80 pix-
els). A well-trained agent can play for an arbitrary number of steps;
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Figure 5: Performance for Figure 6: Performance for Super
Flappy Bird (k is 10%). Pro- Mario Bros. Proposed method
posed method trains 10 trains only 15 videos without any
episodes. meta data.

however we limited 1000 steps for each episode. And the each po-
sition of the pipe is random. In this case, we used the DQN [16]
RL algorithm in which the network had three convolutional and two
FC layers. Each layer had ReLU activation, and it used the Adam
optimizer and mean-squared loss. The size of replay memory was
2 million steps, the batch size was 256, and all other parameters
were fixed following the original implementation [13]. The update
frequency of the deep network was 100 steps. Here, we compared
the following rewards:

Hand-crafted reward (the point for game):

+0.1 if alive
re =3+1  if passes through a pipe (12)
-1 if collides with a pipe

Proposed method (predict next bird position):
re = exp(=lisf,; = 0’ (se)llz/20%) . (13)

where s; is the absolute position of the bird that can be given from
the simulator, and o is 0.02. The absolute position was not in the
state value; however, it can be estimated by simple image processing.
The internal model, 8’, was constructed using an LSTM network
to predict the bird’s next position given the image input. The set of
expert trajectories, 7, had only 10 episodes obtained from a trained
agent available from the Github repository [13]. In this case, we
also compared the learned agent behavior with that obtained using a
behavior cloning method.

Figure 5 clearly demonstrates that our proposed method converges
faster than hand-crafted rewards. This can be ascribed to the fact
that the hand-crafted reward only took into account the distance
traveled, whereas, our internal model estimated reward provides
information about which absolute transitions are good. The hand-
crafted reward of this game was the big positive value when it passed
the pipe, otherwise it was small positive value when the bird was
alive. This means the big positive value will be delayed even if the
bird chose the good action. Even though it is given each step, the
hand-crafted reward does not contain the detailed reward value for
each transition. On the other hand, our method could estimate the
detailed reward by using the similarity of state information for each
transition. Furthermore, our proposed method converges significantly



better with fewer demonstrations than the baseline BC method; the
reason is the number of demonstration was small.

4.4 Super Mario Bros.

In the final task, we considered a more difficult setting so that we
could obtain only raw state information to clarify the benefits of
the proposed method. Here, we applied our internal model-based
reward estimator to Nintendo’s “Super Mario Bros.” game and used
a classic Nintendo video game emulator [20] for the environment.
In this experiment, we compared our method with a curiosity-based
method [22] using their implementation [21]. However, we slightly
modified the game implementation to always initialize Mario at
the starting position rather than at a previously saved checkpoint.
The game has a discrete control where an agent (Mario) can make
14 types of action; however, a single action was repeated for six
consecutive frames. The state, s;, consisted of sequential input of
four 42 x 42-pixel gray-frame images with skipping every six frames.
We used the A3C [15] on-policy RL algorithm to evaluate our model.
Moreover, we tried the gameplay of stage “1-1” of the game in this
experiment. The main objective of the agent was to travel as far as
possible. We compared the following rewards:

Difference of Mario’s position (dense reward):
rt = position; — position;—1 (14)

Difference of score (sparse reward):

ry = score; — Scores—q (15)
Curiosity [22]:

re = nllg(se+1) — Op (P(se), ar)ll2 (16)
Proposed method (predict next frame):

re = max(0, =lls{ 4 — 0"(s¢e)ll + ) an

where position; is Mario’s current position value, score; is a score
value, s; is the latest frame in s¢, and ¢ is 0.025. Position, score,
and related meta-information could be directly obtained from the
emulator. In our proposed method, we took 15 game playing videos,
each showing a single episode, from five different expert players
and provided the demonstration trajectories, 7. In total, 7 consisted
of 25 thousand frames without any action or meta-information. We
skipped 36 frames to generate s;' because people cannot play as fast
as an RL agent. We used a three-dimensional convolutional neural
network (3D-CNN) [11] as the 8’ model. The internal model, 6’,
predicted the next frame image given the continuous frames, s¢. The
3D-CNN network consisted of four convolutional layers* and one
final convolutional layer to reconstruct the image. Once again, the
proposed method required only videos to train the internal model.
Here, we changed the ¢ function to a linear function to evaluate
a simple formulation of the proposed method. However, a naive
reward estimate, (r; = —|ls;,; — 0’ (s¢)|l2+1),> does not work for
this stage of the game. The Mario with the naive method ends up
getting positive rewards even if the agent remains stationary at the
initial position (since enemy agents do not appear if Mario does not
move). Hence, we applied a threshold, ¢, value to prevent this trivial

4Two layers had (2 x 5 x 5) kernels, and the next two layers had (2 x 3 x 3) kernels. The
all had 32 filters and (2, 1, 1) stride in every two layers.
5The +1 reward was for the terminal condition.

sub-optimal outcome. { was calculated on the basis of the reward
value obtained by staying stationary at the initial position.

Figure 6 shows the performance with the different reward func-
tions. The graph shows the mean learning curves across trials. As
observed, the agent does not reach the goal every time, even with the
hand-crafted dense rewards 6. This behavior was also observed in
the original paper for their reward case [22]. However, as observed
in Figure 6, our proposed method learns relatively faster than the
curiosity- and score-based reward methods. Moreover, it was faster
to obtain a good policy with the proposed method than with cases
using dense rewards.

Comparing with the flappy bird experiment, the position reward is
representing about the goodness for each transition which means it
is ‘dense’ reward; the hand-crafted reward in the flappy bird was the
delayed reward. We summarize the proposed method could generate
the predicted dense reward, which is better value than sparse reward
and has potential to become similar to dense reward, without any
reward information. Also, this proposed reward helps a RL with
reward as the reward shaping method.

Regarding future work for Mario experiment, we believe using
deeper networks as function approximators and high-resolution input
images may improve the performance of the convergence further.

S CONCLUSION

In this paper, we proposed a reinforcement learning method that uses
an internal model based on expert-demonstrated state trajectories to
predict rewards. This method does not require learning the dynamics
of the external environment from state-action pairs. The internal
model consisted of a temporal sequence predictive RNN for the
given expert state distribution. During RL, the agent calculated the
similarity between actual and predicted states, and this value was
used to predict the reward. We compared our proposed methods
with hand-crafted rewards and previous methods in four different
environments. Overall, we demonstrated that using internal model
agents enables the learning of good policies, learning curves have
better initialization, and learning converges faster than hand-crafted
reward and sparse reward in most cases. It was also shown that the
method could be applied to cases in which the demonstration was
obtained directly from videos by person.

However, detailed trends were different for the different envi-
ronments depending on the complexity of the task. As a current
limitation of the method, we found that none of the rewards based on
our proposed method were versatile enough to be applicable to every
environment without any changes in the reward definition. There is
room for further improvement, especially regarding modeling the
global temporal characteristics of state trajectories. We would like
to tackle the problem of generalizing across tasks in future work.
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