
Multi-objective Reinforcement Learning
for the Expected Utility of the Return

Diederik M. Roijers
Vrije Universiteit Amsterdam (NL)

Vrije Universiteit Brussel (BE)

Denis Steckelmacher
Vrije Universiteit Brussel

Brussels, Belgium

Ann Nowé
Vrije Universiteit Brussel

Brussels, Belgium

ABSTRACT
Real-world decision problems often have multiple, possibly conflict-
ing, objectives. In multi-objective reinforcement learning, the effects
of actions in terms of these objectives must be learned by interact-
ing with an environment. Typically, multi-objective reinforcement
learning algorithms optimise the utility of the expected value of the
returns. This implies the underlying assumption that it is indeed the
expected value of the returns (i.e., an average returns over many
runs) that is important to the user. However, this is not always the
case. For example in a medical treatment setting only the return of a
single run matters to the patient. This return is expressed in terms
of multiple objectives such as maximising the probability of a full
recovery and minimising the severity of side-effects. The utility of
such a vector-valued return is often a non-linear combination of the
return in each objective. In such cases, we should thus optimise the
expected value of the utility of the returns, rather than the utility of
the expected value of the returns. In this paper, we propose a novel
method to do so, based on policy gradient, and show empirically
that our method is key to learning good policies with respect to the
expected value of the utility of the returns.

KEYWORDS
Multi-Objective Reinforcement Learning; Policy Gradient, Expected
Scalarised Return

1 INTRODUCTION
Real-world sequential decision problems often require learning
about the effects of actions by interacting with an environment.
When these effects can be measured in terms of a single scalar objec-
tive, such problems can be modelled as a Markov decision process
(MDP) [18]. However, many real-world decision problems have
multiple possibly conflicting objectives, leading to a multi-objective
Markov decision process (MOMDP) [10, 25], in which the rewards
are vector-valued. When the preferences of a user can be expressed
as a linear utility function, and this function is known a priori, an
MOMDP can be translated to a single-objective MDP and solved ac-
cordingly. However, when user preferences are non-linear, explicitly
multi-objective methods are required, even if the utility function is
in fact known a priori.

In (MO)MDPs, executing a policy leads to rewards that are ac-
crued over time. The discounted sum of rewards resulting from a
policy execution is called the return. In a single objective MDP the
return is a scalar, and an agent aims to maximise the expected return.
The expected return is called the value of a policy, and a policy that
maximises the value is called an optimal policy. In an MOMDP
however, the return is a vector. This makes the question of what to
optimise more complex as there is typically no single policy that

maximises the value of all objectives simultaneously. There are thus
typically multiple policies that offer different trade-offs between the
objectives. Which policy should be preferred then depends on the
utility function of the user.

We follow the utility-based approach [10] and assume that there
exists a utility function that maps a vector with a value for each ob-
jective to a scalar utility.1 Specifically, we consider the single-policy,
known weights scenario as described in [10], in which the utility
function is known and possibly non-linear. When deciding what to
optimise in a multi-objective MDP we need to apply this function
to our vector-valued returns in some way. There are two choices for
how to do this [10, 11]: after computing the expected value of the
return of a policy, leading to the scalarised expected returns (SER)
optimisation criterion, or before computing the expected value, lead-
ing to the expected scalarised returns (ESR) optimisation criterion.
Which of these criteria is the right one depends on how the policies
are applied in practice. SER is the correct criterion if a policy can be
executed multiple times, and it is the average sum of rewards over
multiple episodes that determines the utility for the user. ESR is the
correct formulation if it is the outcome of a single policy execution
that is relevant to the user. In the medical domain [8] for example,
if the policy corresponds to a medical treatment plan, the treatment
is only going to be executed for a single patient once, and it is the
outcome of that execution that is relevant to the patient. We also
note that even if the policy can be executed multiple times, it can
still be the outcome of a single policy execution that is relevant to
the user. For example, consider commuting to and from work; even
if the average commute time and comfort levels are acceptable, it
being very speedy and comfortable on some days while being highly
uncomfortable and long on others will most likely have a different
average utility than the utility of the average outcome.

1.1 Motivating example
Let us consider a simple multi-objective MDP. Imagine that you
have been made responsible for preparing grilled fish for a feast
in the evening. To prepare this, you need to start building your fire
at 5PM, so you have a limited amount of time to gather fish and
wood, leading to the MOMDP in Figure 2. In each state there are
two available actions: either gather or move. Starting at the river
(state 1), you can first obtain raw fish (objective 1) by gathering.
Fishing has a stochastic outcome; you either catch a fish in a given
timestep or you do not leading to a reward (1, 0) with probability 0.1,

1We note that there is a known preference scheme that does not fit the utility-based
approach, i.e., the lexicographic preference ordering, e.g., proposed by [28, 29]. In
this scheme, the first objective is infinitely more important than the second, the second
infinitely more important than the third, and so on. For example, this could correspond
to a company that only cares about environmental impact as long as it does not diminish
their profit by even one cent. We consider this an edge case, and beyond the scope of
this paper.

Swoods Sriver

Figure 1: 2-state gathering MOMDP with 2 objectives, fish and
wood, and two actions, gather and move (illustrated). This im-
age is based on images from http://www.irasutoya.com/, who
have given us permission to use these images.

and (0, 0) with probability 0.9. After fishing, you need to spend one
timestep to move from the river to the woods. In the woods, you can
gather wood to grill the fish, i.e., taking the gathering action leads to
a reward of (0, 1) with probability 0.9 and (0, 0) with probability 0.1.
Because two units of wood are required to grill one fish, the utility
function is:

u(Vπ) = min

(
V π
f ish ,

⌊
V π
wood
2

⌋)
.

This is a non-linear utility function. Given this non-linear function,
it is clear that a deterministic stationary policy would not suffice,
i.e., any deterministic stationary policy would lead only gathering
rewards in one objective, and thus to a utility of 0. Furthermore, ap-
plying a priori scalarisation by applying the utility function directly
on the immediate rewards is also not possible, e.g., u((1, 0)) = 0,
which does not correspond to the utility of the user.

Instead a non-stationary policy that conditions on both state and
time would lead to reasonable rewards. However, conditioning on
how many fish the agent has already obtained can lead to even better
policies. Furthermore, because the utility depends on the past as well
as the future rewards, it no longer suffices to optimise with respect to
the future rewards only. Therefore, we need methods that explicitly
take both the past and future rewards into account while optimising a
policy for a given state s. We make this point more formal in Section
3, and verify this experimentally in Section 4.

Finally, we note that a randomised policy that gathers only wood
with a probability 0.5, and only fish with a probability of 0.5, would
lead to a satisfactory scalarised value under SER. Such policies are
called mixture policies and are well-known to perform well under
SER [19]. However, such a policy would still yield a scalarised value
of 0 under ESR. This stresses the need for different methods when
we want to optimise for the ESR criterion.

1.2 Contributions
In this paper we make the following contributions. For multi-objective
MDPs with non-linear utility functions and a utility based on the ex-
pected scalarised returns (ESR) optimality criterion—formalised in
Section 2—we propose the Expected Utility Policy Gradient (EUPG)
algorithm, which builds on policy gradient. This fills an important
gap in the multi-objective literature, i.e., the non-existence of meth-
ods for the ESR formulation, which was identified as a gap in 2013
in the survey by Roijers et al. [10]. We show in Section 3 that this
setting requires a reformulation of the loss function for policy gradi-
ent algorithms. Specifically, the loss function needs to contain the
utility function, and the rewards gathered up until a given timestep,
t , as well as from t onwards. Furthermore, we argue that while it is
possible for EUPG to optimise policies that condition on different
parts of the state information, on the previously gathered rewards
leads to the best results. We compare EUPG to corresponding vari-
ants that omit the previously gathered rewards from the loss function,
and show that our loss function is necessary to obtain good policies
in MOMDPs with non-linear utility functions under the ESR crite-
rion in Section 4. Furthermore, we show empirically that explicitly
conditioning the policies indeed leads to the better policies.

2 BACKGROUND
In this section, we provide the necessary background for multi-
objective MDPs, and in particular the different optimisation criteria
that can be used. Furthermore, we provide background with regards
to Policy Gradient for single-objective MDPs, which we use as a
starting point for our main algorithmic contribution.

2.1 Multi-Objective MDPs
A multi-objective Markov decision process (MOMDP) [10] is a tuple
⟨S,A,T , r,γ ⟩, where S is the set of states,A is the action space,T :
S×A×S → [0, 1] is the transition function, γ is the discount factor
that determines the relative importance of immediate rewards with
respect to later rewards, and r : S×A×S → Rd is a d-dimensional
vector-valued expected immediate reward function. The reward at
each timestep rt resulting from taking an action at in a state st , is a
random variable such that E[rt |st ,at] =

∑
s ′ T (s,a, s

′)r(s,a, s ′). In
this paper, we assume finite-horizon MOMDPs. Therefore, policies
typically condition on the timestep as well as the state. All our results
also hold for infinite-horizon episodic MOMDPs (with or without
conditioning on the timestep).

In most multi-objective reinforcement learning research, an agent
aims to compute a policy π that optimises the utility of the expected
return:

π∗ = argmax
π

u(E[
∞∑
t=0

γ t rt | π , s0]),

where the utility function, u, can be any monotonically increas-
ing function in all objectives. This formulation is known as the
scalarised expected return (SER) optimisation criterion [10]. SER
is the correct criterion if a policy can be executed multiple times
for the same user, and it is indeed the average sum of rewards over
multiple episodes that determines the utility for the user. For exam-
ple, if the user is a mining company that mines different resources
that it supplies to its costumers, the average amount of the different
resources is what is important to this company.

2

http://www.irasutoya.com/

In contrast, there are many domains in which it is not the average
sum of rewards over multiple episodes that determines the utility.
For example, imagine that the policy corresponds to a treatment plan
for a serious illness. In that case, for a single patient the policy is
only ever executed once. The utility of such a policy then depends
on a single rollout, and we should maximise the expected utility over
single policy executions, i.e.,

π∗ = argmax
π
(E[u(

∞∑
t=0

γ t rt) | π , s0]. (1)

This is known as the expected scalarised return (ESR) optimisation
criterion. The lack of methods for ESR optimisation methods for
MOMDPs was stated as an important open problem in the seminal
survey on MOMDPs [10]. To our knowledge, this is the first paper
to address this problem.

In this paper we assume that the utility function, u, is known. We
therefore require to find a single policy that optimises the expected
utility of the discounted sum of rewards (ESR). This is thus a single-
policy scenario, known as a known weights setting. In this setting,
if u would be linear, we can suffice with single-objective methods.
The challenge in this setting is if u is non-linear, in which we require
explicitly multi-objective methods [10].

2.2 Policy Gradient
To tackle the above identified problem, we aim to construct an RL
algorithm for MOMDPs under ESR. To do so, we start from single-
objective policy gradient. Policy Gradient [17, 27] is a Reinforce-
ment Learning algorithm that directly learns a parametric policy πθ ,
instead of learning a value-function and inferring a policy from it
[24]. After each episode, the trace of states, actions and obtained
rewards is used to compute (st ,at ,Rt) state-action-return tuples,
with Rt =

∑∞
i=0 γ

irt+i . Then, those tuples are used to optimise the
following loss:

L(π) = −
T∑
t=0

Rt log(πθ (at |st)). (2)

Because, as a Monte Carlo method, policy gradient uses the returns
as input for its updates, rather than expected returns (values), this
makes it a good starting point for ESR optimisation in learning for
MOMDPs.

In most cases, πθ is represented using a neural network, with θ
as weights. The optimisation process then consists of computing
the gradient δ = ∂L(π)

∂θ , then moving θ one step in direction of the
gradient:

θ ← θ + αδ . (3)

Because the loss L(π), and hence its gradient, depends on the returns
obtained by following the policy πθ , only a single gradient step can
be taken after each episode. Once a gradient step has been taken,
another episode must be run, to obtain fresh experiences and returns
from the environment. However, multiple episodes resulting from
the same policy can be used for a single gradient step.

3 EXPECTED UTILITY POLICY GRADIENT
To optimise the expected scalarised returns (ESR, Equation 1), we
take policy gradient for single-objective MDPs as a starting point.

As a Monte-Carlo method, policy gradient explicitly uses the returns
to optimise the policy. For convenience, let us split the returns into a
rewards accrued until a timestep τ , R−τ =

∑τ−1
t=0 γ

t rt , and the future
returns.

As any single-objective method, policy gradient exploits the fact
that returns are additive and that maximisation only needs to happen
with respect to the future returns, i.e., if until a given timestep τ ,
the accrued returns are R−τ , the best policy to follow thereafter is
the one that optimised the returns from thereon, irrespective of R−τ .
For multi-objective MOMDPs with a non-linear utility function u
however, this is not the case, as:

max
π

E[u(R−τ +
T−1∑
t=τ

γ t rt)|π , st] , u(R−τ) +max
π

E[u(
T−1∑
t=τ

γ t rt)|π , st].

For example, consider the motivating example of Section 1.1, and
imagine that there are five time steps left and the agent is still at
the river. If the agent already has two raw fish, the agent should
move to the woods, to try to obtain four pieces of wood resulting in
a utility of 2. However, if the agent has been unlucky and has not
caught any fish yet, it would be best to try to gather fish for one or
two more time steps, hopefully resulting in one raw fish, which (in
combination with gathering wood for 2 or 3 time steps) could still
lead to a utility of 1. This implies that in order to optimise a policy
for a state st at time t , we need to take the returns already accrued
in the past into account.

In policy gradient, the policies are gradually adapted towards the
attained utility by gradient descent with respect to the loss function
(Equations 2 and 3). We thus need to redefine this loss function
to reflect the expected utility over returns. To do so, we need to
take both past and future rewards into account. For a given policy
execution, and a timestep τ we define the (vector-valued) returns
before τ as

R−τ =
τ−1∑
t=0

γ t rt ,

and the returns from τ until the horizon T as

R+τ =
T−1∑
t=τ

γ t rt .

We then adapt the loss function to apply to finite-horizon multi-
objective MOMDPs under the ESR optimality criterion:

L(π) = −
∑
t
u(R−τ + R

+
τ) logπθ (a |s,R

−
τ , t). (4)

Note that the the utility function is now inside the loss function,
and that in addition to s, the policy can condition on the previously
accrued returns R−τ and t (because it is a finite-horizon setting). For
infinite horizon settings we can remove the conditioning on t .

4 EXPERIMENTS
To test how successful EUPG is in terms of finding a policy that op-
timises the expected user utility of the returns (ESR, Equation 1) we
perform experiments on two types of problems. In all measurements,
we average over 16 runs.

3

Problem specifications. We consider two MOMDP: first we con-
sider the 2-state 2-objective gathering MOMDP of Section 1.1 (Fig-
ure 2). Secondly, we consider a randomly generated MOMDP with
limited underlying structure as specified in the MORL-Glue bench-
mark suite [21]. We use an MOMDP with |S | = 100 states, |A| = 8
actions and 4 objectives. For the first three objectives we generate
strictly positive rewards, and for the fourth objective strictly negative
rewards. The transition functionT (s,a, s ′) is generated using N = 12
possible successor states per action, with random probabilities drawn
from a uniform distribution. To ensure that every state is reachable
from every state, it is enforced that for every state with a number x ,
x+1 mod |S | is one of the successor states for one of the actions. As
the utility function we use:

u(v) = v1 +v22 +v
2
3 + 0.1v4. (5)

Note that this function is monotonically increasing on the domain of
the returns, as v2 and v3 are strictly positive.

Neural Networks. For these experiments we employ relatively
simple neural networks. The input layer consists of one node per
state, for which all values are 0, except for the current state whose
value is 1 (i.e., one-hot encoding), as well as an input node for the
timestep, t . If the policy conditions on the accrued rewards so far
as well, there is one extra input node. Then there is a single fully
connected hidden layer with 100 neurons. Finally, the output layer
has one node per action.

Ablation. We perform an ablative study with respect to our two
additions to just applying the utility function to the future return
in Policy Gradient, i.e., adding R−τ inside the utility function, and
conditioning the policy on R−τ , leading to three alternative loss func-
tions. Starting from our full loss function (Equation 4), we show
that having R−τ inside the utility is necessary and leads to better
utility than only looking at the future returns (even if the policy does
condition on the previously accrued rewards) by comparing against
the following alternate loss function:

L(π) = −
∑
t
u(R+τ) logπθ (a |s,R

−
τ , t). (6)

Furthermore, we also investigate what happens if we remove extra
policy R−τ conditioning, with R−τ inside the utility:

L(π) = −
∑
t
u(R−τ + R

+
τ) logπθ (a |s, t), (7)

as well as without:

L(π) = −
∑
t
u(R+τ) logπθ (a |s, t). (8)

We expect the conditioning on R−τ to be especially important in the
2-state gathering MOMDP, as it is highly important to remember
how many fish are already caught (as discussed in Section 1.1 and
3).

4.1 Results
To measure the performance of EUPG in a setting where it is highly
important to remember the previously accrued rewards we run it on
the 2-state gathering MOMDP specified in Section 1.1, and compare
it to the ablated versions of EUPG (Figure 2). As expected, the ver-
sions with policies that condition on the previously accrued reward

 4

 6

 8

 10

 12

 14

 16

0K 5K 10K 15K 20K

U
til

ity
 p

er
 e

pi
so

de

Episode

R+

R+, accrued
R- + R+

R- + R+, accrued

Figure 2: Learning curve (utility per episode) as a function of
the episode number, averaged over 16 runs, for the 2-state gath-
ering MOMDP of Section 1.1, for EUPG (using the loss of Equa-
tion 4, thick blue line) and the ablated versions according to
Equations 6 (thick black line), 7 (thin blue line), and 8 (thin
black line).

perform much better than the ones that do not. Furthermore, when
we compare EUPG to the ablated version that lacks the previously
accrued rewards inside the utility function (Equation 6, the thick
black line in the Figure), the ablated version seems to learn a bit
faster, but quickly plateaus, while EUPG continues to learn steadily,
and slowly overtakes the ablated versions.

The 2-state gathering MOMDP is tailored towards it being highly
important to condition on the previously accrued rewards. Further-
more, because the structure of the MOMDP is relatively simple, an
agent can learn to do well, even without the exactly right version of
the utility. Therefore, we also compare EUPG to its ablated versions
on a random 100-state MOMDP (Figure 3). In this more complex
MOMDP it is immediately obvious that it is essential to have the
previously accrued rewards inside of the utility function in the loss
function (the blue lines in the Figure).

When comparing the performance of EUPG to that of its ablated
version in the 100-state random MOMDP, the final performance
is not much different. This can be explained by the fact that the
100-state random MOMDP is ergodic, and the rewards are highly
randomised. Furthermore, EUPG learns a bit slower than the ablated
version, as it has extra inputs to condition on, leading to more pa-
rameters to tune in the neural network. However, we know from the
gathering MOMDP that conditioning the policy on the previously
accrued rewards can be essential in MOMDPs as well. We therefore
conclude that all elements of EUPG are necessary to attain good
utility in RL for MOMDPs under the ESR optimality criterion.

5 RELATED WORK
As mentioned above, most multi-objective reinforcement learning
research employs the SER optimality criterion [10, 22, 26]. Perhaps,
an important cause of this is that most MORL research follows the
(older) axiomatic approach, i.e., they assume that the Pareto front
is the correct solution concept, as is common in multi-objective
optimisation. Assuming this axiom, there is no need to derive the

4

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800

0K 50K 100K 150K 200K 250K 300K

U
til

ity
 p

er
 e

pi
so

de

Episode

R+

R+, accrued
R- + R+

R- + R+, accrued

Figure 3: Learning curve (utility per episode) as a function of
the episode number, averaged over 16 runs, for a 100-state Ran-
dom MOMDP, for EUPG (using the loss of Equation 4, thick
blue line) and the ablated versions according to Equations 6
(thick black line), 7 (thin blue line), and 8 (thin black line).

appropriate solution concept from the ways the policies are used in
practice, and the distinction between SER and ESR stays hidden.

The most related SER methods are those proposed by Geibel for
constrained MDPs [7] and Vamplew et al.’s steering approach for
Pareto-optimal MORL [20], which have consider the use of policies
conditioned on the previously accrued return, R−τ , as a means to
handle non-linear utility.

One other Monte-Carlo method, that could possibly also be ex-
tended to work for ESR rather than SER, is multi-objective Monte-
Carlo tree search (MO-MCTS) [23]. In this algorithm, roll-outs are
performed after going down branches of a search tree, to estimate
the vector-valued expected returns of the policies implied by the
branches of the search tree. To reformulate this approach to apply to
ESR, it should be the utility of the returns that are maximised, and
the rewards attained so far should be stored inside the nodes of the
search tree. It would be interesting to compare our method to such
an approach, and an interesting opportunity for future work.

Rather than SER-methods for multi-objective MDPs, our ap-
proach is probably most related to preference-based RL, in which
multi-objective rewards are not available but user preferences can
be queried by asking the user to compare two roll-outs of (different)
policies. A good example of this class of methods is preference-
based (direct) policy learning (PPL) [1, 2]. Like our method, PPL
builds off direct policy learning with policy gradient [9]. PPL gen-
erates histories, and lets a user compare these histories to provide
preferences between them. PPL then tries to infer the scalar sums
of rewards, i.e., the returns, that could underlie these preferences.
Due to the fact that these returns are scalar, rather than vector-valued
as we assume in this paper, non-linear preferences with respect to
desirable features of these trajectories cannot be inferred.

Preference-based approximate policy iteration [6] employs roll-
outs to learn preferences on state-action level, i.e., given a state they
attempt to learn the preferred action. However, as we have shown
in this paper, this way of learning preferences is fundamentally
incompatible with the ESR-formulation in MORL, as the optimal
action can depend on the previously accrued rewards if preferences
are non-linear with respect to the objectives.

An algorithm in the class of preference-based RL algorithms that
avoids estimating scalar returns is preference-based evolutionary di-
rect policy search [4]. Here, candidate solutions are generated using
an evolutionary approach, and full histories are directly compared to
determine the Condorcet winner between these candidates. While
this permits non-linear preferences, it does not make use of the ob-
served vector-valued rewards in MOMDPs. We argue that in many
real-world problems, while it would be hard to define scalar reward
functions—as the authors also argue—it is in fact much easier to
define multiple measurable objectives that represent desirable fea-
tures of a solution. In such settings, preference-based RL approaches
would loose this information.

6 CONCLUSION
In this paper, we proposed Expected Utility Policy Gradient. To our
knowledge EUPG is the first algorithm for learning with non-linear
utility functions in MOMDPs under the Expected Scalarised Returns
(ESR) optimality criterion which was identified as an important gap
in the literature in [10]. In order to be able to learn in this setting, we
showed that the accrued returns until the current timestep needed to
be included in the conditioning of the policy, and inside the utlity
function inside the loss function of EUPG (this utility function needs
to be inside the loss function for ESR). We showed empirically
that EUPG can learn successful policies for MOMDPs under ESR,
and that all elements of EUPG are necessary for doing so. We thus
conclude that EUPG fills an important research gap.

In future work, we aim to significantly extend our experiments.
Furthermore, this method can also be applied for learning in MOMABs
[3, 5], MOPOMDPs [12, 28], and in multi-objective versions of par-
tially observable semi-MDPs [16].

One particularly interesting setting we intend to investigate is the
application of multi-objective reinforcement learning for safe RL
(e.g., [15]). Particularly, we believe that in safe RL, we are typically
not interested in the expected value of the safety objective to trade-
off against the expected values for other objectives, but rather the
safety objective should have acceptable values for each individual
policy execution. In other words, we think that safe RL is a typical
ESR setting.

We aim to combine our this work with interactive online multi-
objective reinforcement learning approaches, in which the utility
function (partially) unknown in the beginning, and must be learned
from interaction with the user while simultaneously interacting with
the environment [13, 14]. In the interactive online MORL setting,
we ultimately aim to learn a single policy, as EUPG does. The
main difference is that the utility function is highly uncertain in the
beginning, adding an important additional challenge.

Another open question is how to combine the ESR setting with a
multi-policy scenario, rather than a single-policy one. Specifically,
following the utility-based approach, a solution set that contains at
least one optimal policy for every possible utility function should be
derived.

5

ACKNOWLEDGEMENTS
The second author is “Aspirant” with the Research Foundation –
Flanders (FWO, Belgium), grant number 1129317N. The first author
was “Postdoctoral Fellow” with the FWO, (grant number 12J0617N)
for the first part of this research.

REFERENCES
[1] Riad Akrour, Marc Schoenauer, and Michele Sebag. 2011. Preference-based policy

learning. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. 12–27.

[2] Riad Akrour, Marc Schoenauer, and Michèle Sebag. 2012. April: Active preference
learning-based reinforcement learning. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. 116–131.

[3] P. Auer, C.-K. Chiang, R. Ortner, and M. M. Drugan. 2016. Pareto front identifi-
cation from stochastic bandit feedback. In AISTATS. 939–947.

[4] Róbert Busa-Fekete, Balázs Szörényi, Paul Weng, Weiwei Cheng, and Eyke
Hüllermeier. 2014. Preference-based reinforcement learning: evolutionary direct
policy search using a preference-based racing algorithm. Machine Learning 97, 3
(2014), 327–351.

[5] M. M. Drugan and A. Nowé. 2013. Designing multi-objective multi-armed bandits
algorithms: A study. In IJCNN. IEEE, 1–8.

[6] Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park.
2012. Preference-based reinforcement learning: a formal framework and a policy
iteration algorithm. Machine Learning 89, 1 (2012), 123–156.

[7] Peter Geibel. 2006. Reinforcement learning for MDPs with constraints. In Euro-
pean Conference on Machine Learning. Springer, 646–653.

[8] D. J. Lizotte, M. Bowling, and S. A. Murphy. 2010. Efficient reinforcement
learning with multiple reward functions for randomized clinical trial analysis. In
ICML.

[9] Jan Peters and Stefan Schaal. 2008. Reinforcement learning of motor skills with
policy gradients. Neural networks 21, 4 (2008), 682–697.

[10] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. 2013. A Survey of
Multi-Objective Sequential Decision-Making. JAIR 48 (2013), 67–113.

[11] D. M. Roijers and S. Whiteson. 2017. Multi-Objective Decision Making. Synthesis
Lectures on Artificial Intelligence and Machine Learning 11, 1 (2017), 1–129.

[12] Diederik Marijn Roijers, Shimon Whiteson, and Frans A Oliehoek. 2015. Point-
Based Planning for Multi-Objective POMDPs.. In IJCAI. 1666–1672.

[13] D. M. Roijers, L. M. Zintgraf, P. Libin, and A. Nowé. 2018. Interactive Multi-
Objective Reinforcement Learning in Multi-Armed Bandits for Any Utility Func-
tion. In ALA workshop at FAIM. 8. To Appear.

[14] D. M. Roijers, L. M. Zintgraf, and A. Nowé. 2017. Interactive Thompson Sampling
for Multi-objective Multi-armed Bandits. In Algorithmic Decision Theory. 18–34.

[15] Jonathan Serrano-Cuevas, Eduardo F. Morales, Pablo Hernandez-Leal, Daan
Bloembergen, and Michael Kaisers. 2018. Learning on a Budget Using Distribu-
tional RL. In ALA workshop at FAIM. 6. To Appear.

[16] Denis Steckelmacher, Diederik M Roijers, Anna Harutyunyan, Peter Vrancx,
Hélène Plisnier, and Ann Nowé. 2018. Reinforcement learning in POMDPs with
memoryless options and option-observation initiation sets. In AAAI.

[17] Richard Sutton, D McAllester, Satinder Singh, and Yishay Mansour. 2000. Policy
Gradient Methods for Reinforcement Learning with Function Approximation.
Neural Information Processing Systems (NIPS) (2000), 7. https://doi.org/10.1177/
004728757601400384

[18] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. Vol. 1. MIT press Cambridge.

[19] P. Vamplew, R. Dazeley, E. Barker, and A. Kelarev. 2009. Constructing stochastic
mixture policies for episodic multiobjective reinforcement learning tasks. In
Advances in Artificial Intelligence. 340–349.

[20] Peter Vamplew, Rustam Issabekov, Richard Dazeley, Cameron Foale, Adam Berry,
Tim Moore, and Douglas Creighton. 2017. Steering approaches to Pareto-optimal
multiobjective reinforcement learning. Neurocomputing 263 (2017), 26–38.

[21] Peter Vamplew, Dean Webb, Luisa M. Zintgraf, Diederik M. Roijers, Richard
Dazeley, Rustam Issabekov, and Evan Dekker. 2017. MORL-Glue: A Benchmark
Suite for Multi-Objective Reinforcement Learning. In BNAIC. 389–390.

[22] K. Van Moffaert and A. Nowé. 2014. Multi-objective reinforcement learning using
sets of Pareto dominating policies. JMLR 15, 1 (2014), 3483–3512.

[23] Weijia Wang and Michele Sebag. 2012. Multi-objective monte-carlo tree search.
In Asian conference on machine learning, Vol. 25. 507–522.

[24] Christopher Watkins and Peter Dayan. 1992. Q-learning. Machine learning 8, 3-4
(1992), 279–292.

[25] C Ch White and Kwang W Kim. 1980. Solution procedures for vector criterion
Markov decision processes. Large Scale Systems 1, 4 (1980), 129–140.

[26] M. A. Wiering, M. Withagen, and M. M. Drugan. 2014. Model-based multi-
objective reinforcement learning. In ADPRL. 1–6.

[27] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning 8, 3 (1992), 229–256.

https://doi.org/10.1023/A:1022672621406
[28] Kyle Hollins Wray and Shlomo Zilberstein. 2015. Multi-Objective POMDPs with

Lexicographic Reward Preferences.. In IJCAI. 1719–1725.
[29] Kyle Hollins Wray, Shlomo Zilberstein, and Abdel-Illah Mouaddib. 2015. Multi-

Objective MDPs with Conditional Lexicographic Reward Preferences.. In AAAI.
3418–3424.

6

https://doi.org/10.1177/004728757601400384
https://doi.org/10.1177/004728757601400384
https://doi.org/10.1023/A:1022672621406

	Abstract
	1 Introduction
	1.1 Motivating example
	1.2 Contributions

	2 Background
	2.1 Multi-Objective MDPs
	2.2 Policy Gradient

	3 Expected Utility Policy Gradient
	4 Experiments
	4.1 Results

	5 Related Work
	6 Conclusion
	References

