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ABSTRACT
Learning to produce efficient movement behaviour for humanoid
robots from scratch is a hard problem, as has been illustrated by
the "Learning to run" competition at NIPS 2017. The goal of this
competition was to train a two-legged model of a humanoid body
to run in a simulated race course with maximum speed. All submis-
sions took a tabula rasa approach to reinforcement learning (RL)
and were able to produce relatively fast, but not optimal running
behaviour. In this paper, we demonstrate how data from videos of
human running (e.g. taken from YouTube) can be used to shape the
reward of the humanoid learning agent to speed up the learning
and produce a better result. Specifically, we are using the positions
of key body parts at regular time intervals to define a potential
function for potential-based reward shaping (PBRS). Since PBRS
does not change the optimal policy, this approach allows the RL
agent to overcome sub-optimalities in the human movements that
are shown in the videos.

We present experiments in which we combine selected tech-
niques from the top ten approaches from the NIPS competition
with further optimizations to create an high-performing agent as
a baseline. We then demonstrate how video-based reward shap-
ing improves the performance further, resulting in an RL agent
that runs twice as fast as the baseline in 12 hours of training. We
furthermore show that our approach can overcome sub-optimal
running behaviour in videos, with the learned policy significantly
outperforming that of the running agent from the video.
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1 INTRODUCTION
Replicating human movements and behaviour in humanoid robots
is a formidable challenge with many exciting applications, ranging
from health care (e.g. artificial limbs [1]) to space exploration [2].
Since the manual engineering of controllers for such tasks is ex-
tremely difficult, machine learning and specifically reinforcement
learning has received much attention in this area. A recent NIPS
competition [3] focused on the creation of a simulated humanoid
running robot in a continuous and high-dimensional environment.
The top entries to the competition employed state-of-the-art deep
reinforcement learning techniques [4, 5], which resulted in strong,
but not optimal, performance.

In this paper, we demonstrate that videos showing human run-
ning behaviour can be used to significantly improve the learning
performance. In our approach, we use the coordinates of specific
body parts (e.g. the foot) to define a potential function that is fed
into potential-based reward shaping [6].

To create a strong baseline for the evaluation of our approach,
we combined selected RL techniques of the top ten competition
entries with further optimizations to create a running agent that
displays a significantly faster learning rate than the top entry. We
then add the reward shaping from video data sampled from various
YouTube videos, which resulted in a running agent that reached
twice the running speed as our baseline in 12 hours of training.

Since potential-based reward shaping has the nice theoretical
property of not changing the optimal policy [6], data taken from
sub-optimal running behaviour does not prevent the RL agent from
overcoming the sub-optimalities and produce humanoid running
that outperforms the data source. We demonstrate this theoretical
property empirically by sampling limb positions from a slower-
running agent and show how our approach generates a running
robot, that after a relatively short time of training, starts to run
faster than the original agent.

Overall, the main contribution of our work is to demonstrate
how data extracted from videos of human movements can be used
to significantly speed up the reinforcement learning of humanoid
robots. While our work focuses on the training of humanoid run-
ning behaviour, the proposed techniques can easily be applied to
any other form of humanoid movements.

2 BACKGROUND
2.1 Reinforcement Learning
Reinforcement learning is a paradigm which allows agents to learn
by reward and punishment from interactions with the environment
[7]. The numeric feedback received from the environment is used
to improve the agent’s actions. The majority of work in the area of
reinforcement learning applies a Markov Decision Process (MDP)
as a mathematical model [8].

An MDP is a tuple
(
S,A,T ,R), where S is the state space, A is the

action space, T (s,a, s ′) = Pr (s ′ |s,a) is the probability that action a
in state s will lead to state s ′, and R(s,a, s ′) is the immediate reward
r received when action a taken in state s results in a transition to
state s ′. The problem of solving an MDP is to find a policy (i.e.,
mapping from states to actions) which maximises the accumulated
reward. When the environment dynamics (transition probabilities



and reward function) are available, this task can be solved using
policy iteration [9].

When the environment dynamics are not available, as with most
real problem domains, policy iteration cannot be used. However,
the concept of an iterative approach remains the backbone of the
majority of reinforcement learning algorithms. These algorithms
apply so called temporal-difference updates to propagate informa-
tion about values of states and/or state-action pairs, Q(s,a) [20].
These updates are based on the difference of the two temporally
different estimates of a particular state or state-action value. The
Q-learning algorithm is such a method [21]. After each transition,
(s,a) → (s ′, r ), in the environment, it updates state-action values
by the formula:

Q(s,a) ← Q(s,a) + α[r + γ maxQ(s ′,a′) −Q(s,a)] (1)
where α is the rate of learning and γ is the discount factor. It
modifies the value of taking action a in state s , when after executing
this action the environment returned reward r , and moved to a new
state s ′.

2.2 Potential Based reward shaping
The idea of reward shaping is to provide an additional reward
representative of prior knowledge to reduce the number of subop-
timal actions made and so reduce the time needed to learn [6, 10].
This concept can be represented by the following formula for the
Q-learning algorithm:

Q(s,a) ← Q(s,a) + α[r + F (s, s ′) + γ maxQ(s ′,a′) −Q(s,a)] (2)

where F (s, s ′) is the general form of any state-based shaping reward.
Even though reward shaping has been powerful in many experi-
ments it quickly became apparent that, when used improperly, it
can change the optimal policy [10]. To deal with such problems,
potential-based reward shaping was proposed [6] as the difference
of some potential function Φ defined over a source s and a desti-
nation state s ′ : F (s, s ′) = γΦ(s ′) − Φ(s) where γ must be the same
discount factor as used in the agent’s update rule (see Equation
1). Ng et al. [6] proved that potential-based reward shaping, de-
fined according to Equation 2, guarantees learning a policy which
is equivalent to the one learned without reward shaping in both
infinite and finite horizon MDPs.

Wiewiora [11] later proved that an agent learning with potential-
based reward shaping and no knowledge-based Q-table initializa-
tion will behave identically to an agent without reward shaping
when the latter agent’s value function is initialized with the same
potential function.

These proofs, and all subsequent proofs regarding potential-
based reward shaping including those presented in this paper, re-
quire actions to be selected by an advantage-based policy [11].
Advantage-based policies select actions based on their relative dif-
ferences in value and not their exact value. Common examples
include greedy, ϵ-greedy and Boltzmann softmax.

2.3 Deep-RL
In Deep RL, the Q value function is represented as a multi-layer neu-
ral network [12]. Deep RL algorithms have been shown to perform
strongly on RL tasks which have been infeasible to tackle before.

Figure 1: A screenshot of the "Learning to Run" simulation
environment

Over recent years, a number of algorithms and optimizations have
been proposed, and we have chosen to apply the Deep Determinis-
tic Policy Gradient (DDPG) algorithm for our application domain
[13]. DDPG has been shown to be effective in continuous action
domains where classic reinforcement learning methods struggled.

Specifically, in the DDPG algorithm two neural networks are
used: µ(S) is a network (the actor) that returns the action vector
whose components are the values of the corresponding control
signals. Qw (s,a) is a second neural network (the critic, that returns
the Q value, i.e. the value estimate of the action of a in state s .

∇θ J (πθ ) =

∫
S
ρπ (s)

∫
A
∇θπθ (a |s)Q

w (s,a)dads

= Es∼ρπ ,a∼πθ [∇θ logπθ (a |s)Q
w (s,a)]

(3)

where θ is the parameter vector of the probabilistic policy and ρπ (s)
is the probability of reaching state s with policy π .

For a more complete description of DDPG, see [13].

2.4 Reinforcement Learning from
Demonstration

Human expert demonstrations have been demonstrated to improve
the learning speed and accuracy of RL agent on a wide range of
tasks. Most work in this area (e.g. [14, 15]) focused on the use of
state-action recordings as demonstration. This is infeasible in the
case of video data, where only state information is available and
the demonstration actions are not explicitly provided and often can
not be derived either (as is the case with running). More recently,
various methods for state-only demonstrations have been proposed
(e.g. [16, 17]). However, all of these methods target the imitation
of demonstrations. Our work is employing potential-based reward
shapingwhich uses the demonstrations to speed up the learning, but
is also able to overcome any sub-optimalities in the demonstration
rather than purely imitating them.
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3 SIMULATION ENVIRONMENT
The simulation environment has been provided by the "Learning
to Run" competition and is based on the OpenSim environment
employing the Simbody physics engine. The environment simulates
a three-dimensional race course with small obstacles, along which
a humanoid robot with 6 joints (ankle, knee, and hip on two legs)
and corresponding muscles is running (see Figure 1). The actions
of the running humanoid robot are excitation values applied to
the muscles implemented in the robot model. The next state of
the environment is computed by the physics engine based on the
resulting muscle activations, forces, velocities and positions of the
joints.

The OpenSim [3] model environment represents the robot state
using a vector of 41 features:
• position of the pelvis (rotation, x, y)
• velocity of the pelvis (rotation, x, y)
• rotation of each ankle, knee and hip (6 values)
• angular velocity of each ankle, knee and hip (6 values)
• position of the center of mass (2 values)
• velocity of the center of mass (2 values)
• positions of head, pelvis, torso, left and right toes, left and
right talus (14 values)
• strength of left and right psoas (a muscle at the lower spine)
• next obstacle: x distance from the pelvis, y position of the
center relative to the the ground, radius.

The reward of an agent is provided at each simulation step and is
the distance covered in the runminus themuscle strain as computed
by the simulation environment.

4 BASELINE AGENT
When designing the baseline agent, we combined selected tech-
niques from the top 10 competition entries [5] with further optimiza-
tions. In this section, we summarize the most beneficial techniques
used, all of which are taken from various contributions published
in [5].

In all exerimental results presented in the remainder of this paper,
the experiments have been repeated 5 times, and the graphs show
the standard error from the mean. The RL parameter choice was
α = 0.08 and γ = 0.9, which have been determined experimentally.

4.1 State representation
The original state representation provided by the competition soft-
ware contained 41 features, described in Section 3. In our state
representation we added 71 features, including:
• Two-dimensional coordinates of key body positions relative
to the pelvis at the center point (0,0).
• Two-dimensional velocity and acceleration vectors for key
body points.

The new state representation allowed us to significantly speed
up the learning process as seen on Figure 2.

4.2 Additional training experience
After running a simulation episode, we trained the RL agent with
additional mirrored data, which represented the agents experience
during the episode and reflecting it along the xy plane. This adds

Figure 2: This Figure shows significant learning speed in-
crease after adding velocity and acceleration features and
centering the coordinates system at the pelvis position

Figure 3: Speeding up learning process through adding mir-
rored data

valuable training for the value estimator (i.e. the critic), since the
task is symmetrical. Figure 3 shows the resulting performance
improvement.

4.3 Repeating the chosen action
Each time the running agent chooses an action, this is repeated three
times. Because we employed an actor-critic method, this reduced
the number of computations needed to generate the next action
during an episode by a factor of three. The resulting performance
gain can be seen in Figure 4.

4.4 Reducing state resolution
In this optimization step, all the state representation data was
changed from double to float. This resulted in a speed-up of the
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Figure 4: Performance gains when repeating each action
three times

Figure 5: Switching from double to float

computations and a somewhat smaller state space, while also re-
ducing the precision of the state representation. Figure 5 shows the
resulting performance increase.

4.5 Neural network topology
After applying all of the techniques above, we compared 5 different
network architectures by arbitrarily varying the number of layers
and neurons per layer. The results are presented in Figure 6. For our
baseline agent we chose the best performing layer, using 5 layers
with 128 neurons each.

5 REWARD SHAPING FROM VIDEO DATA
After designing our baseline, we added potential-based reward shap-
ing from video data taken from arbitrary YouTube videos depicting
running of humans and human-like characters. In this section we
describe how the potential function was generated.

Figure 6: Various neural network topologies: LxN denotes L
layers with N neurons per layer

5.1 Potential function
The overall potential function is defined as the sum of potential
functions for every body part: pelvis, two knees and two feet. Fol-
lowing the potential-based reward shaping approach, an additional
reward is given to an agent on each simulation step corresponding
to the change in potentials of the source and target state.

We considered the following three different potential functions
for each body part (knee and foot) in our research, all of them based
on the inverse of the distance between the respective body part
coordinate in the video-generated data and the humanoid robot. The
three potential functions represent three different inverse distance
functions:
• PF1: 1

dx+dy
• PF2: 1√

dx 2+dy2

• PF3: 1
dx 2+dy2

where dx (dy) is the absolute difference between the x (y) coor-
dinate of the respective body part taken from the video data and
the x (y) coordinate of the body part of the humanoid robot.

5.2 Data collection
For our potential function we have used the following three sources
of video data:
• A video of a cartoon character running (see Figure 7 for a
screenshot)
• A video of a running character in a computer game (see
Figure 8 for a screenshot)
• A video of a running human (see Figure 9 for a screenshot)

Each of the sources was used to define a potential function.
The performance of the resulting potential functions in RL are
compared in Figure 11. Note that the learning curves were not
trained until final convergence, which would require much more
time and based on the theoretical properties of potential-based
reward shaping would ultimately reach the same performance. In
each source we recorded the positions of the two knees and the
two feet relative to the pelvis as a two-dimensional coordinate. The
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Figure 7: Screenshot from a video depicting a cartoon char-
acter running (taken from http://y2u.be/2y6aVz0Acx0)

Figure 8: Screenshot from a video depicting a
computer game character running (taken from
http://y2u.be/YbYOsE7JyXs)

recording frequency was four positions per half step. The resulting
coordinates were normalized according to the OpenSim simulation.
While in our work the extraction of the coordinates was done
manually, algorithms to accurately extract body part positions in
images with a clear view of the body do exist (e.g. [18, 19]), and we
intend to use these in future work.

5.3 Selecting the data source and the potential
function

We first compared the performance of the potential functions based
on three videos and the inverse distance measure PF2. The results

Figure 9: Screenshot from a video depicting a human run-
ning (taken from http://y2u.be/5mVgThl-yMU)

Figure 10: Comparing the three videos as a data source for
the potential function based on PF2

for this experiment is shown in Figure 10, and demonstrates that
the human video is the best data source for the reward shaping.

After selecting the running human video as the data source,
we compared the three different potential functions as depicted in
Figure 11. The results show that PF3 performs best.

6 EVALUATION OF VIDEO-BASED REWARD
SHAPING

Figure 12 shows the comparison of our chosen reward shaping
approach (PF3) to the RL baseline. The results show that the reward
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Figure 11: Comparing three potential functions

Figure 12: Performance comparison between the baseline
and the reward shaping approach

shaping speeds up the learning significantly, reaching double the
running speed at 12 hours of training. The end result after 24 hours
of training still shows a significant advantage of the reward shaping
approach. It is also worth noting that the demonstration video is
of a running human who is using his arms, while the simulation
model does not include these.

An important advantage of potential-based reward shaping is the
theoretical guarantee that the shaping will not change the optimal
policy. In order to demonstrate this advantage in our context, we
used a weak running robot generated by the baseline RL agent after
12 hours of training as a sub-optimal data source for the potential
function. Clearly, the resulting agent is not running optimally, and
the positions of the feet and knees will not be in optimal positions
most of the time. We then train our RL agent with the reward
shaping generated from these sub-optimal coordinates (using PF3),
and compared the performance to the weak runner. The results are
shown in Figure 13, and demonstrate that the RL agent is able to

Figure 13: Performance of the reward shaping approach
with suboptimal data. The dotted vertical line represents 12
hours of training (the training time of the shaping source).

overcome the suboptimal performance of the data source. In fact,
after 20 hours of training, the performance is more than double that
of the suboptimal running agent. Also, note that the suboptimal
shaping did not hurt the learning performance significantly. After
12 hours of training the shaped agent performs comparable to the
baseline agent with 12 hours of training.

7 CONCLUSIONS
In this paper, we presented a method to use videos of human and
human-like running to shape the reward of an RL agent learning
to run. Our results demonstrate that a significant improvement
in learning speed can be achieved by our proposed method, as
compared to a strong baseline which we designed combining se-
lected techniques of the top ten entries to the "Learning to Run"
competition at NIPS 2017.

In future work, we intend to employ automated body pose ex-
traction methods such as the one presented in [19] and widen our
investigation to other humanoid movement apart from running,
e.g. jumping.
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