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ABSTRACT

The general interest in the Internet of Things allows control devices
and/or machines to connect through cloud-based architectures in
order to share information about their status and environment. In
many settings, as for example wind farms, similar machines are
instantiated to perform the same task, which is called a fleet. Ex-
ploiting such a formation is especially useful in control settings.
Specifically, seamless data sharing between fleet members could
greatly improve the sample-efficiency of reinforcement learning
techniques. However, in practice these devices, while similar, have
small discrepancies due to production errors or degradation, pre-
venting devices to simply aggregate and employ all fleet data. We
propose a novel reinforcement learning method that learns to trans-
fer knowledge between similar fleet members, and creates member-
specific dynamic models for control. To this end, our algorithm
uses Gaussian processes to establish cross-member covariances.
We demonstrate our approach on the continuous mountain car
setting as a preliminary experiment. Our method significantly out-
performs two baseline approaches, namely individual learning and
joint learning where all fleet samples are used.
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1 INTRODUCTION

In Reinforcement Learning (RL) [10], the objective of an agent is
to optimize its control decisions based on rewards given by the
environment it is operating in. One of the greatest challenges in RL
is the efficient usage of the gathered experience. State-of-the-art
techniques typically require a large amount of experience, which
renders the technique ill-suited for real industrial applications.

In this work, our objective is to improve sample efficiency in
the context of a fleet, i.e., a set of similar devices instantiated to
perform the same task (e.g., wind farms and industrial robot arms).
To this end, we present a method that aggregates the experience
of the different fleet members, in contrast to the experience of a
single device. The time is right for such a method, as the general
interest in the Internet of Things allows fleet members to share data
from modern wireless sensors through a cloud-based architecture,
providing rapidly a complete view of the problem.

As each fleet member carries out the same task, they are typically
designed in the same way. In reality, fleet members can differ slightly
in terms of dynamics, for example due to production errors or
degradation. Thus, naively aggregating data over all members is
insufficient and could prove to be detrimental for the learning
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process. Therefore, information should only be shared between
fleet members that are sufficiently similar.

We propose a novel method for fleet control, where we allow
knowledge transfer between similar devices on a dynamics-level
without compromising the specificity of an individual’s model.
More specifically, we create a Bayesian RL method that uses Gauss-
ian processes (GP) to model the fleet members’ transition functions
and aims to establish correlations between them by using coregion-
alization.

GPs are Bayesian models known to successfully model complex
non-linear surfaces using only a limited amount of data. They have
been used before in RL [2, 3, 8] and are popular when high sample-
efficiency is required. Coregionalization was originally introduced
in geostatistics to generate valid covariance matrices for modeling
multivariate data sets [4]. It has later been used in multi-task learn-
ing to describe correlations between a set of tasks in the context of
GPs [1].

The setting we consider is closely related to Bayesian multi-
task RL. [5, 11] propose a hierarchical Bayesian model, where the
transitions, rewards and/or values are modeled as samples from
a common distribution per task group. The objective is then to
cluster the tasks, such that similar ones draw their parameters from
the same prior distribution. Thus, shared information is encoded
in a single prior per class of tasks. Our method does not use an
hierarchical architecture with class priors, but instead focusses on
direct pair-wise correlations between members, allowing for more
focussed knowledge transfer.

In this preliminary work, we develop a novel reinforcement
learning method based on coregionalized Gaussian processes. We
start by giving background on RL (Section 2) and GPs (Section 3). We
describe the Bayesian fleet transition model and how each member
can access its specific predictive statistics (Section 4). Next, we test
our method in the continuous mountain car setting and discuss the
results (Section 5). Finally, we conclude by discussing future work
(Section 6).

2 REINFORCEMENT LEARNING

Consider the Markov decision process (MDP) M = (S,A, 7 ,y,R)
[7], where S, A are continuous state and action spaces, 7 (s, a) is a
probability distribution for entering state s” when executing action
ainstates, R : S X AXS — R is the immediate reward function,
and y € [0, 1] is the discount factor determining the importance of
future rewards. Additionally, consider a policy 7 : S — A, which
defines the control decision mechanism of an agent.

The long-term reward when following a policy 7 is defined as
a value function V7. For the given continuous MDP, the value
function can be written recursively as

V7(s) = Egwq (s, n(s)) [R(s,7(s),8") + YV (s")] (1)



which is essentially the sum of all possible future rewards weighted
by their probability of occurrence. The goal of an agent is then to
find the optimal policy 7* : S — A which maximizes this expres-
sion.

Generally, the value function cannot be analytically computed
for continuous state spaces due to the integral in the expected value.
However, if we model 7 (-, -) as a GP and R(:, -, -) as a Gaussianly
shaped reward around a desired goal state, it can be shown that
V7™ becomes a GP as well [8].! We refer the reader to [8] for the
analytical expressions of the value function, as well as the policy
iteration method for finding the optimal policy 7*. Throughout the
paper, we assume a known reward function around a specified goal
state, and focus on learning the GP transition model.

3 GAUSSIAN PROCESS TRANSITION MODEL

As explained above, the transition model of an RL agent is defined
as a probabilistic distribution 7 (s, a) over possible next states, con-
ditioned on the current state-action pair (s, a). For simplicity, we
assume that the output state features are independently distributed,
thus, s, ~ 7¢(s,a) for each state feature e.

Gaussian processes (GPs) [9] are an extension of multivariate
normal distributions. Similar to the latter, a GP describes a set of
normally distributed random variables that are potentially corre-
lated, meaning that knowledge about one variable gives informa-
tion about another. However, the difference is that a GP is defined
over arbitrary sets of annotated random variables. In a regression
context, these random variables are the outputs of an unknown
function, and their annotations are the inputs to that function.

Formally, assuming a zero-mean GP prior and any arbitrary set
of inputs X, we can model the associated outputs y as follows:

y 1 X~ N(0.K) @

where K; j = k(x;,X;) is the covariance between variables y; and y;.
When regressing over a training set (Xir, yir), we can compute the
posterior statistics of (y | X, Xir, ytr) to obtain the predictive outputs
y for inputs X. For the zero-mean GP described in Equation 2, we
have
-1

Ely | X, Xtr, ytu] = KX,XUKXU’XHY 3)
-1

VIy | X, Xer, yir] = Kx, x + Kx, %, Ky, x, Kxi, X
where Kx x,, contains the pair-wise covariances between sets X
and X, according to the covariance kernel.

The choice of covariance kernel k(:,-) is important, as it de-
fines various characteristics about how the model generalizes from
the training set. A popular choice for the covariance kernel is the
squared exponential (SE) kernel, defined as:

D
kgE(x,x') =exp| - Z
d=1

(xq = x})?
W 4

d
where 0 contains the hyperparameters [ ;, and [; denotes the length
scale along dimension d, which characterizes the smoothness of the
unknown function. This kernel has several properties, including
continuity, differentiability and stationarity, rendering it a popular

!More complicated forms can be used for the reward function (e.g., a GP), without
altering the form of V7.

choice for generic modeling purposes. We optimize the hyperpa-
rameters 6 using evidence maximization on the training set [9].

Considering a state transition (s, a, s”), we can approximate the
transition model of the RL agent using multiple GPs, where we
define the inputs and output respectively as x = [s,a] € RP and
y = s, € R. Thus, we have one GP for each feature in the output
state description.

4 COREGIONALIZATION OVER MULTIPLE
TRANSITION MODELS

Fleet members should only share information when they are corre-
lated. Thus for a given state-action, the outputs of the transition
models of two members are either close, or there exists a linear
transformation between them. Intuitively, the GP’s covariance ker-
nel allows for generalization in the regression model by correlating
unobserved outputs to observed ones. Coregionalization extends
this concept to the outputs of different GPs, suggesting that infor-
mation from one process can be generalized to another. The main
contribution in this work is to use coregionalization to capture
similarities between multiple transition models, in order to decide
whether knowledge transfer should occur.

Formally, we define a fleet MDP MFp = (S, A, Té,: ,¥»R). Compar-
ing to the definition in Section 2, all properties are the same, except
each fleet member m. Note that we assume the same hyperparam-
eters 0 for each model, and thus, the models only differ from one
another when regressing on the member-specific training sets.

In order to achieve knowledge transfer between models, we
construct a fleet-wide model 7;}: . We introduce a covariance kernel
that uses a matrix G, describing the correlations between members
mand m’ [1]:

kp (e, m], [x',m']) = kg (x,x)Gm (5)

that Tg = {%(m) }% | is now a set of transition models, one for

where entry G, v denotes the covariance between the output
states of members m and m’. In order to make sure G is a valid
covariance matrix, we use the decomposition [4]

T

G=ww' +al withw e RM, ac Rjgo (6)

where ww! encodes relationships between members and o con-

tains independent variance terms for each member. 6 contains now
both the hyperparameters sg of the SE kernel, as well as the pa-
rameters of G, and can be optimized using the training set (th, yg)
of the entire fleet, annotated with the indices of its members.
Using the new fleet covariance kernel, we can describe a single
GP jointly over the outputs of all fleet members, given in Equation 2,
and compute the posterior statistics according to Equation 3 for
regression. Note that even though the new model uses the whole
fleet data set, each member can access its own individual model by

computing their own posterior statistics for y(m) | X(m),XtI;, yg.

Thus, we can define a transition model %(m)(s, a) = 7'6,F (s,a,m)
for each member m.

5 MOUNTAIN CAR EXPERIMENT

To illustrate our method, we set up a preliminary experiment in the
continuous mountain car domain, based on [6]. The car is positioned
in a valley and its objective is to reach the top of the right-most hill.



Velocity
Velocity
°
o
8

-0.25

—-0.50 -0.50

-0.75 -0.75

Velocity
°
°
8

—0.50

-0.75

-1.00 -1
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

(a) Single

.00 1
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Position Position

(b) Joint

-1.00
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Position

(c) Fleet

Figure 1: Contour plots of the learned value functions (GPs) during the least performant runs (i.e., with the largest distance
from the goal). Each of the scenarios are depicted; single (a), joint (b) and fleet (c) learning.

However, the slope is too steep for the car to simply accelerate to
the top. Thus, it has to first drive up the opposite side of the valley,
and then accelerate from there to reach the top.

In this problem, a state s consists of the position and velocity
of the car, while an action is a force applied to either side of the
car. Both the state features and action are in the range [-1, 1]. The
start and goal state are respectively given by sgtart = [—0.5, 0] and
Starget = [0.5, 0], i.e., the bottom and top of the hill. We consider
the following reward Gaussian function:

R(s) = exp(~Ils — starget|[*/0.05%) @)

where maximum reward is achieved at starget.

We consider a fleet of three mountain cars: a learner with a car
mass of 1.0 kg, and two teachers with masses 1.1 kg and 5.0 kg.
For each teacher, we provide a batch of 300 transitions randomly
sampled from their environment. We do the same for the learner,
but only sample 20 times, resulting in 620 samples total.

The learner cannot sufficiently estimate its transition model
with only 20 samples, making it challenging to find the optimal
policy. Transferring knowledge from the first teacher will be helpful.
However, the last teacher is incapable of successfully climbing
the hill due to its high mass, thus sharing samples with it would
misrepresent the learner’s transition model. Therefore, the objective
of the learner is to estimate a sufficiently accurate transition model
in order to solve the task, by figuring out the correlations with all
teachers and use their knowledge accordingly. Once the transition
model is learned, we compute the optimal value function and policy
using the policy iteration method presented in [8].

To measure the performance of our algorithms, we run the ex-
periment 100 times for three scenarios. In two scenarios, the learner
simply uses the SE kernel described in Equation 4 and learns a model
using only its own samples (single) or all fleet samples (joint). This
sets the two extrema we compare our method to. In the third sce-
nario, the learner uses all samples, but employs the fleet kernel
described in Equation 5.

We focus on how close the learner can get to the goal state.
Therefore, we compute the 2-norm of the smallest distance achieved
during a run and fit a density curve (see Figure 2). We observe
that simply learning from the full data set without the fleet kernel
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Figure 2: Densities over the smallest distances from the goal
achieved during 100 runs, for each of the three scenarios.
Both a fitted X? distribution and histogram are plotted for
each of the three scenarios; single, joint and fleet learning.

rarely leads to reaching the goal. This is due to the heavy teacher
being incapable to reach the goal, which is untrue for the learner.
Therefore, it is often standing still during runs. Learning from own
experience can lead to good results, but is usually insufficient to
represent the dynamics well. Due to the uncertainty in the dynamics
model, the car is often incapable of finding a suitable policy. The
only learner to consistently achieve good results is the one with the
fleet kernel, as the learner is able to figure out which teacher is most
useful to share data with. On average, the fleet learner achieves
a distance of 0.05 from the goal state, while the single and joint
learners respectively maintain an expected distance of 0.46 and
0.18. The fleet learner’s mean is significantly different from the
others with p-values < 1e—4 on Wilcoxon signed-rank tests.
Interestingly, none of the runs of the fleet learner fall above a
minimum distance of 0.2, meaning that the learner at least knows
the direction it should move towards, which is not true for the



L T1 T2
L 1 0.9996 | 0.5207
T1 | 0.9996 1 0.5208
T2 | 0.5207 | 0.5208 1
(a) Position

L T1 T2

L 1 0.9986 | 0.3099
T1 | 0.9986 1 0.3103
T2 | 0.3099 | 0.3103 1
(b) Velocity

Table 1: Optimized correlation matrix between the fleet
members, i.e., learner (L), teacher 1 (T1) and teacher 2 (T2)
for both state dimensions.

other two scenarios. This becomes clear when we examine Figure 1,
which shows the resulting value functions during the worst runs
in terms of distance from the goal. The fleet learner finds the re-
gion of highest reward, which is around starget. The single learner
misidentifies this region, and according to the reward scale, it also
captures a fairly flat value surface due to its uncertainty. The joint
learner just learns to go as right as possible, but expects not much
difference in reward according to the scale.

We focus now on the correlation matrices learned by the fleet
learner. Given the optimized covariance matrix G from Equation 6,
we can compute the correlation matrix

corr(G) = (diag(G)) 3G (diag(G)) % )

The element-wise means of these matrices over all runs are given
in Table 1. The learner successfully identifies the first teacher to
be similar, while assigning a notably lower correlation value to the
last one. However, note that there still exists a moderate amount
of correlation between the two agents, especially in the position-
dimension, while the joint learner clearly fails to solve the task. As
we are using correlations, two members are considered similar if
there exists a linear relationship between their outputs, and not
only when they are spatially close to one another. The fleet kernel
detects this linear relationship and accomplishes to take this into
account.

6 CONCLUSION

In this work, we introduced a novel sample-efficient fleet RL method
based on Gaussian processes and coregionalization. It detects corre-
lations between a fleet of devices, and manages to transfer knowl-
edge between these devices. We provided a preliminary example of
how the method works in a setting where a learner is given data
from a similar and dissimilar fleet member. While the extrema of
no transfer and single model learning perform poorly, the learner
that uses our method manages to solve the task consistently.

In future work, we will compare our method to the Bayesian
hierarchical multi-task RL approach [11] in more complex settings.
We postulate our method will outperform the hierarchical alterna-
tive in fleet settings where members are highly similar, and direct
knowledge transfer would prove to be beneficial in contrast to

shared prior parameter distributions over subsets of members. Ad-
ditionally, we will further develop the fleet transition model. Two
main issues should be investigated. First, as a learner acquires more
experience, information from the other fleet members becomes irrel-
evant, or will even bias the transition model and therefore decrease
performance. This is called negative transfer, and it is important
to analyse this phenomenon. However, we expect correlations to
diminish on their own, as the model does not compute these sta-
tistics on the data directly, but rather optimizes these values w.r.t.
the model’s accuracy on the observed data. This means that when
the model becomes inaccurate when including data from a similar
member, it should automatically reduce the correlation with that
member. Secondly, it is often the case that new or non-stationary
members require more of the fleet’s data, while others can suffi-
ciently solve the task with their own acquired experience. However,
correlations are bidirectional, causing either negative transfer to oc-
cur to the more knowledgeable fleet member when the correlations
are high, or insignificant transfer to the less knowledgeable fleet
member when they are low. We will explore possible unidirectional
relationships to counter this issue.
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