
Interactive Multi-Objective Reinforcement Learning
in Multi-Armed Bandits for Any Utility Function

Diederik M. Roijers
Vrije Universiteit Amsterdam (NL)

Vrije Universiteit Brussel (BE)

Luisa M. Zintgraf
University of Oxford (UK)

Vrije Universiteit Brussel (BE)

Pieter Libin
Vrije Universiteit Brussel

Brussels, Belgium

Ann Nowé
Vrije Universiteit Brussel

Brussels, Belgium

ABSTRACT
In interactive multi-objective reinforcement learning (MORL), an
agent has to simultaneously learn about the environment and the pref-
erences of the user, in order to quickly zoom in on those decisions
that are likely to be preferred by the user. In this paper we study inter-
active MORL in the context of multi-objective multi-armed bandits.
Contrary to earlier approaches to interactive MORL, we do not make
stringent assumptions about the utility functions of the user, but
allow for non-linear preferences. We propose a new approach called
Gaussian-process Utility Thompson Sampling (GUTS), which em-
ploys non-parametric Bayesian learning to allow any type of utility
function, exploits monotonicity information, and limits the number
of queries posed to the user by ensuring that questions are statis-
tically significant. We show empirically that, in contrast to earlier
methods, GUTS can learn non-linear preferences, and that the regret
and number of queries posed to the user are highly sub-linear in the
number of arm pulls.

KEYWORDS
Multi-Objective Reinforcement Learning; Multi-objective multi-
armed bandits; Interactive Online MORL

1 INTRODUCTION
Real-world decision problems often require learning about the ef-
fects of various decisions by interacting with an environment. When
these effects can be measured in terms of a single scalar objective,
such problems can be modelled as a multi-armed bandit (MAB) [2].
However, many real-world decision problems have multiple pos-
sibly conflicting objectives [26]. For example, an agent learning
the best strategy to deploy ambulances from a set of alternatives
may want to minimise response time, while also minimising fuel
cost and the stress levels of the drivers. When the user is unable
to accurately and a priori specify preferences with respect to such
objectives for all hypothetically possible trade-offs, the user needs
to be informed about the values of actually available trade-offs be-
tween objectives in order to make a well-informed decision. For
such problems, MABs no longer suffice, and need to be extended to
multi-objective multi-armed bandits (MOMABs) [3, 16], in which the
effects of alternative decisions are measured as a vector containing a
value for each objective.

Most research on MOMABs [3, 15, 41] focusses on producing
coverage sets [26], i.e., sets of all possibly optimal alternatives given
limited a priori information about the possible utility functions of

the user(s), as the solution to a MOMAB. A minimal assumption is
that the utility function is monotonically increasing in all objectives.
This leads to the popular Pareto front concept as the coverage set.

Typically, such research assumes an offline learning setting, i.e.,
there is a learning phase in which there is no interaction with the
user, after which the coverage set is presented to the user in order
to select one final alternative. The rewards attained during learning
are assumed to be unimportant; only the expected rewards of the
final alternative is assumed to be relevant to the utility of the user.
However, this is a limiting assumption. For example, the ambulances
discussed above may well be deployed while still learning about
the expected value of the deployment strategies in the different
objectives. In such cases, we need to use our interactions with the
environment efficiently, as we care about the rewards accrued during
learning. When the learning agent can interact with the user and
elicit preferences from the user during learning [29], the agent can
focus its learning on strategies that the user finds most appealing
quickly. This is thus an online and interactive learning scenario.

Roijers et al. ([2017]) recently proposed the interactive Thomp-
son sampling (ITS) algorithm for online interactive reinforcement
learning in MOMABs, and showed that the number of interactions
with the environment in an multi-objective interactive online setting
can be reduced to approximately the same amount of interactions
as in single-objective state-of-the-art algorithms such as Thompson
sampling. However, they make highly restrictive assumptions about
the utility functions of users. Specifically, they assume that user
utility is a weighted sum of the values in each objective.

In real-life multi-objective RL, it is essential to be able to deal
with users that have non-linear preferences. Therefore, we propose
the Gaussian-process Utility Thompson Sampling (GUTS) algorithm.
GUTS can deal with non-linear utility functions, enabling interactive
reinforcement learning in MOMABs for the full range of multi-
objective RL settings. To do so, we make the following key improve-
ments over ITS. Firstly, rather than using a pre-specified model-
space for utility functions, we employ non-parametric Bayesian
learning, i.e., Gaussian Processes (GPs) [8, 12, 24], to be able to
learn arbitrary utility functions. GPs are data-efficient [14], and can
thus quickly learn the relevant part of the utility function. Secondly,
because GPs cannot enforce monotonicity with respect to each ob-
jective (i.e., the minimal assumption in multi-objective RL), as GPs
cannot incorporate monotonicity constraints, GUTS enforces this
monotonicity separately from the GP model of the utility. Finally,
we propose statistical significance testing to only ask the user about
the preferences between statistically significantly different arms,

to prevent irrelevant questions in the earlier iterations, and show
empirically that this does not increase regret.

2 BACKGROUND
In this section we define our problem setting, i.e., multi-objective
multi-armed bandits (MOMABs), and how we model user utility.
First however, we define the scalar version of a MOMAB, i.e, a
MAB.

Definition 2.1. A scalar multi-armed bandit (MAB) [35] is a tuple
⟨A,P⟩ where
• A is a set of actions or arms, and
• P is a set of probability density functions Pa (r) : R→ [0, 1]

over scalar rewards r associated with each arm a ∈ A.
We refer to the the mean reward of an arm as µa = EPa [r] =∫ ∞
−∞

rPa (r)dr , and to the optimal reward as the mean reward of the
best arm µ∗ = maxa µa .

The goal of an agent interacting with a MAB is to minimise the
expected regret.

Definition 2.2. The expected cumulative regret of pulling a se-
quence of arms for each timestep between t = 1 and a time horizon
T (following the definition of Agrawal and Goyal, [2012]), is

E

[T∑
t=1

µ∗ − µa(t)

]
,

where a(t) is the arm pulled at time t , and na (T) is the number of
times arm a is pulled until timestep T .

At the start, the agent knows nothing about P, and can only obtain
information about the reward distributions by pulling an arm a(t)
each timestep, obtaining a sample from the corresponding Pa(t).

In scalar MABs, agents aim to find the arm a that maximises
the expected scalar reward. In contrast, in multi-objective problems
there are n objectives that are all desirable. Hence, the stochastic
rewards r(t) and the expected rewards for each alternative µa are
vector-valued.

Definition 2.3. A multi-objective multi-armed bandit (MOMAB)
[3, 41] is a tuple ⟨A,P⟩ where
• A is a finite set of actions or arms, and
• P is a set of probability density functions, Pa (r) : Rd → [0, 1]

over vector-valued rewards r of length d , associated with each
arm a ∈ A.

Rather than having a single optimal alternative as in a MAB,
MOMABs can have multiple arms whose value vectors are optimal
for different preferences that users may have. Following the utility-
based approach to MORL [26], we assume such preferences can be
expressed using a utility function, u(µ) that returns the scalarised
value of µ. Using this utility function, the online regret for the inter-
active multi-objective reinforcement learning setting is as follows.

Definition 2.4. The expected cumulative user regret of pulling a
sequence of arms for each timestep between t = 1 and a time horizon
T in a MOMAB is

E

[T∑
t=1

u(µ∗) − u(µa(t))

]
,

where a(t) is the arm pulled at time t , µ∗ = argmaxa u(µa), and
na (T) is the number of times arm a is pulled until timestep T .

Roijers et al. ([2017]) require that u(µ) is of the form w · µ, where
w is a vector of weights per objective that sum to one. However,
in many cases, users cannot be assumed to have such simple linear
preferences. Instead, users will often exhibit some degree of non-
linearity. To accommodate for any type of user, we want to only make
the minimal assumption, i.e., that u(µ) is monotonically increasing
in all objectives. This assumption implies that more is better in each
objective, which follows from the definition of an objective.

Because u(µ) can in general be of any form, we do not want to
restrict ourselves to a particular model space. Therefore, we model
u(µ) as a Gaussian Process (GP) [24]. A GP can be used to ap-
proximate any function, while also capturing its uncertainties by
assigning to each point in its domain a normal distribution – the
mean value reflecting the expected value, and the variance reflecting
the uncertainty about the function value at that point. GPs are fully
specified by a mean functionm and a kernel k,

u(µ) ∼ GP(m(µ),k(µ, µ′)) . (1)

Before any comparisons between value vectors are posed to the
user, the GP is initialised by choosing a prior mean function and the
kernel function. The mean function expresses a prior estimate for
the utilities of value vectors. A common non-informative prior is the
zero-mean prior, u(µ) = 0, which we also use for the experiments
in this paper. The kernel function defines how data points (tuples of
the form (x ,u(x))) influence each other. A common choice for the
kernel, which we also use, is the squared exponential kernel:

k(x ,x ′) = exp
(
−(2θ)−1 | |x − x ′ | |2

)
,

in which θ controls the distance over which points influence each
other. The prior belief P(u) about the utility function u(µ) is updated
in light of observation data,C, and its likelihood P(C |u) using Bayes’
rule P(u |C) ∝ P(u)P(C |u), where P(C |u) is the likelihood of the
data given u(µ). The posterior P(u |C) is the updated belief about the
user’s utility, and the current approximation of the utility function.
In this paper, the data for the GP, C, is given in terms of pairwise
comparisons between vectors,

C = {µm ≻ µ′m }
M
m=1 , (2)

where ≻ denotes a noisy comparison u(µm)+ ε > u(µ′m)+ ε
′, where

ε ∼ N(0,σ 2) accounts for noise in the user’s utility (i.e., the user
is allowed to make small errors). Chu and Ghahramani ([2005b])
introduce a probit likelihood for pairwise comparison data with
Gaussian noise, which can be used to update the GP. Given this
likelihood, the posterior becomes analytically intractable and has to
be approximate (e.g., using Laplace approximation as in [8]).

The main advantages of GPs for our setting are that they do not
assume a model-class of functions for u(µ), and that they are sample-
efficient, i.e., the number of comparisons necessary to make accurate
predictions about which µ are preferred is small.

3 GAUSSIAN-PROCESS UTILITY
THOMPSON SAMPLING

In this section, we propose our main contribution: Gaussian-process
Utility Thompson Sampling (GUTS) (Algorithm 1). GUTS interacts

2

GUTS

interaction with
the MOMAB

interaction
with the user

 r(t) μx ≻ μy
 D C

 a
1
(t) μ

θ’,a (t) , μθ’,a (t) 1 1 2 2

Figure 1: Schematic overview of the GUTS algorithm.

with the environment by pulling arms, and storing the resulting
reward-vectors together with the associated arm numbers in a dataset
D. GUTS also interacts with the user by posing comparison queries
to the user, leading to a dataset C (as in Equation 2). A schematic
overview of the interactions of the GUTS algorithm is provided in
Figure 1.

GUTS selects the arms to pull by sampling the posterior mean
reward distributions as in Thompson Sampling (TS) [35] for single-
objective MABs. In contrast to single-objective MABs however,
the means sampled from the posteriors in MOMABs are vector-
valued (line 5). As there is typically not one arm that has the optimal
reward for all objectives, minimising the regret (Definition 2.4)
is only possible by also estimating the utility function, u(µ). To
model this utility function, GUTS employs a Gaussian Process (GP)
(Equation 1), which is a posterior distribution over utility functions,
given data. Because the GP is a posterior over utility functions,
GUTS can sample u(µ) from this posterior. We assume that the
user’s utility function does not depend on the available mean reward
vectors, and can thus be learnt and sampled independently (lines
7–8). When such a sampled u(µ) is applied to the reward vectors,
the action that maximises the utility according to that u(µ) can be
found (lines 9–10) and executed (line 19). Aside from needing to
sample a utility function from the GP to find the utility-maximising
arm, learning the optimal arm to pull given the GP is thus highly
similar to TS. However, the main difficulty is in learning to estimate
u(µ) accurately and efficiently.

In order to learn u(µa), we need data about the preferences of the
user. As mentioned in Section 2 we gather data about the preferences
of users in terms of binary comparisons between two value-vectors
(Equation 2). This is because it is highly difficult—and thus error-
prone—for humans to provide numerical utility evaluations of single
items; it is known that such evaluations can differ based on a number
of external factors that are not relevant to the data, making the
valuations time-dependent, while pairwise comparisons (i.e., asking
the question “Which of these two vectors do you prefer?”) are more
stable [18, 31–33]. In addition to a dataset about the value-vectors
associated with the arms, D, (line 2), GUTS thus keeps a dataset
of outcomes of pairwise preference queries, C, (line 1). To fill C
with meaningful and relevant data, GUTS needs to pose queries
to a (human) decision maker. Because a comparison consists of
two arms, GUTS draws two sample sets of mean reward vectors
from the posteriors of the mean reward vectors given D, θ1 and θ2
(line 5), and two sample utility functions from the posterior over
utility functions givenC (lines 7–8). When these two sets of samples,
paired with their respective sampled utility function, disagree on
what the optimal arm should be, a preference comparison between
the sampled mean vectors of these arms are a candidate query to the
user.

Algorithm 1: GP Utility Thompson Sampling
Input: Parameter priors on reward distributions, and GP prior

parametersm(µ) and k(µ, µ′), countdown, α
1 C ← ∅; // previous comparisons

2 D ← ∅; // observed reward data

3 cd ← countdown

4 for t = 1, ...,T do
5 θ1,θ2 ← draw 2 sets of samples from P(θ |D)

6 θ ′1,θ
′
2 ← PPrune(θ1), PPrune(θ2)

7 u1 ← sample utility function from GP posterior given C

8 u2 ← sample utility function from GP posterior given C

9 a1(t) ← argmax
a

u1(µθ ′1,a
)

10 a2(t) ← argmax
a

u2(µθ ′2,a
)

11 dom ← µθ ′1,a1(t)
≻P µθ ′2,a2(t)

∨ µθ ′2,a2(t)
≻P µθ ′1,a1(t)

12 significant← HotellingT2(D[a1(t)],D[a2(t)]) ≤ α

13 if a1(t) , a2(t) ∧ ¬dom ∧ cd ≤ 0 ∧ significant then
14 Perform user comparison for µθ ′1,a1(t) and µθ ′2,a2(t)

and
add result (in the format, µx ≻ µy) to C

15 cd ← countdown

16 else
17 cd--
18 end
19 r(t) ← play a1(t) and observe reward
20 append (r(t),a1(t)) to D

21 end

GUTS uses a GP to estimate u(µ) from the data in C. GPs are
highly general, data-efficient [14], and as parameter-free function
approximators can fit any function. However, in multi-objective
decision-making we have one more piece of information that we
can exploit. We know that u(µ) is monotonically increasing in all
objectives; i.e., increasing the value of a mean reward vector µ in
one objective, without diminishing it in the other objectives can only
have a positive effect on utility. This corresponds to the minimal
assumption about utility in multi-objective decision making [26], and
leads the notion of Pareto dominance. An arm a is Pareto-dominated,
µa′ ≻P µa , when there is another arm a′ with an equal or higher
mean in all objectives, and a higher mean in at least one objective:

µa′ ≻P µa
def
= (∀i) µa′,i ≥ µa,i ∧ (∃j) µa′, j > µa, j .

Because of monotonicity, Pareto-dominated arms cannot be optimal
[26]. GUTS enforces this condition on two places: first, any Pareto-
dominated arms are excluded from the sets of sampled mean reward
vectors, by using a pruning operator PPrune1 resulting in two smaller
sets of arms θ ′1 and θ ′2 (line 6); second, the user will not be queried
w.r.t. her preferences for dominating-dominated pairs of vectors from
θ ′1 and θ ′2 (line 11), as we already know the answer without posing
the question to the user.

Using C we sample utility functions and maximise over the avail-
able actions in θ ′1 and θ ′2 (line 7–10). We note that because we
estimate u using GPs, GUTS can directly sample values for the

1See e.g. [25] for a reference implementation of PPrune.

3

values in θ ′1 and θ ′2 without fully specifying the entire function u(µ)
for all possible µ in Rn .

Because interactions with a decision maker are an expensive
resource, we need to select preference queries between value vectors
carefully. Therefore, a) these queries should be relevant with respect
to finding the optimal arm (preferences between arms that are both
suboptimal are less relevant), b) the arms in the queries should be
statistically significantly different from each other, and c) queries
should be progressively infrequent, as we assume that the user will
be decreasingly motivated to provide more information to the system
as time progresses. To make sure that only relevant questions are
asked (a), GUTS only poses queries to the user when the two sets
of samples and utility functions disagree on the arm that maximises
the utility for the user. As more information comes in, we expect
the two sets of samples to disagree on which arm is optimal less (c).
Additionally, we also want to assure that queries only concern arms
for which the difference between values is statistically significant (b).
For this, we use Hotellings–T 2 test [19], which is the multi-variate
version of the Students-T test. The input for this test is all the data
with respect to both arms we want to compare, i.e., a1(t) and a2(t),
in the data gathered so far (D). The threshold P-value with respect to
when we say the difference is not insignificant, α , can be set to a low
value. In the experiments we used α = 0.01. We note that Hotellings–
T 2 test applies to the rewards per arm (in D) are distributed with
a multi-variate Gaussian, which we use in our experiments. If the
the rewards for the arms would be distributed differently, different
significance testing should be employed instead, or can even be
removed (at the expense of some additional, unnecessary queries at
the beginning) if necessary. 2

Finally, one might argue that a human decision maker would
not always be able to answer all the queries the algorithm might
require. For example, the algorithm might simply generate too many
questions for the user to answer while it continues to learn about
the environment, and when the user has answered a question, the
subsequent questions might already be deprecated. To simulate this
effect we introduce a simple cool-down of the number of arm-pulls
that will be taken before a user is again able to answer another
query (line 15 and 17). We hypothesise that while more queries are
desirable, GUTS will still be able to achieve sub-linear regret. In
the most positive scenario, a higher cool-down could even lead to
the algorithm being able to ask more informative queries because it
learned more about the environment in the meantime, which could
have a positive effect.

4 EXPERIMENTS
To test the performance of GUTS in terms of user regret (Definition
2.4) and the number of queries posed to the user, and to test the
effects of different parameter settings, we perform experiments on
two types of problems. In Section 4.1, we use a 5-arm MOMAB
that requires learning non-linear preferences to show that GUTS is
indeed able to handle such non-linear preferences. In Section 4.2,
random MOMAB instances are used to perform more extensive
experiments.

2Please note that assumptions about the distributions of the reward vectors are all that
is required for significance testing, and that for significance testing no assumptions
regarding the utility function is required.

Figure 2: A 5-arm MOMAB

We compare GUTS to single-objective Thompson sampling pro-
vided with the ground truth utility functions of the user. While this
is an unfair comparison (putting GUTS at a disadvantage), as our
setting does not actually allow algorithms to know the ground truth
utility function, it does provide insight into how much utility is lost
due to having to estimate the utility function via pairwise compari-
son queries. Furthermore, in Section 4.1 we compare GUTS to ITS
[29].

All MOMABs used in these experiments have multi-variate Gauss-
ian reward distributions. This stands in contrast to earlier work, i.e.,
[29], that uses multi-variate Bernoulli-distributions. For the GPs we
use the common zero-mean prior,m(µ) = 0, and squared exponential
kernel [24]. When significance testing is used, we use α = 0.01 as
the significance threshold.

4.1 A 5-arm MOMAB
In this subsection, we employ a 5-arm MOMAB (depicted in Figure
2), with the following ground truth mean vectors: (0, 0.8), (0.1, 0.9),
(0.4, 0.4), (0.8, 0.0), and (0.9, 0.1). Note that (0, 0.8) and (0.8, 0.0)
are Pareto-dominated. We employ a monotonically increasing utility
function:

u5(µ) = 6.25 max (µ0, 0)max (µ1, 0),
leading to the arm with mean vector (0.4, 0.4) being optimal with
utility 1. Each reward distribution is a multi-variate Gaussian with
correlations 0 and in-objective variance 0.005.

To find the optimal arm, a MOMAB-learning algorithm must be
able to handle the non-linearity of u5(µ). In order to test whether
GUTS indeed can, we run GUTS on the MOMAB of Figure 2, and
compare it to ITS [29], and Thompson Sampling provided with the
ground truth utility in Figure 3 (top). The results confirm that GUTS
(for all parameter settings) can handle non-linear preferences and
has a highly sub-linear regret curve. In contrast, ITS is limited to
the space of linear utility functions and does not manage to attain
sub-linear regret.

As previously stated, a user may not have time (or is not willing)
to answer all questions posed by GUTS, as the user will need time
to answer the queries, and may be preoccupied with other tasks
as well. Therefore, we introduced the cool-down parameter in the
GUTS algorithm to simulate the user answering a smaller portion
of the questions. We compare different settings for the cool-down

4

Figure 3: 5-arm MOMAB results for ITS, ground-truth TS, and GUTS with different cool-down settings and significance testing
enabled (top), and with cool-down 0 and significance testing either enabled (s1) or disabled (s0) (bottom): (left) regret as a function of
arm-pulls with significance testing enabled and different cool-down settings for GUTS, (right) the corresponding number of queries
posed to the user as a function of arm-pulls.

parameter (Figure 3, top) we observe that, as expected, no cool-down
(i.e., cd = 0), performs best in terms of regret, the regret closely
approximates the regret of Thompson sampling supplied with the
ground truth (Figure 3, top left). The number of queries to the user
can be reduced by increasing cool-down (Figure 3, top right). For
example, at cool-down 3, the user answers to a query once in at most
4 arm-pulls. We observe that while this comes at the cost of some
regret, the learning curves remain highly sub-linear, and GUTS is
still able to learn the right preferences, albeit more slowly.

We tested the effect of (disabling) significance testing (Figure
3, bottom). We found no significant effect on regret in this simple
problem, and a small effect on the number of queries in favour of the
doing significance testing. This is because there is very little variance
in the reward distributions of the arms, so after only a few questions
the difference between to sets of samples for two arms becomes
significant. We show the effect on more complex MOMABs in the
next subsection.

In summary, we conclude that GUTS can effectively approximate
the utility function for the purpose of selecting the optimal arm in
this problem.

4.2 Random MOMABs
Random MOMABs are generated randomly using the number of ob-
jectives d , and the number of arms, |A|, as parameters, following the
procedure of [29]: |A| samples µ′a are drawn from a d-dimensional

Gaussian distribution N(µ′a |µrand , Σrand), where µrand =®1 (vec-
tor of ones), and Σrand is a diagonal matrix with σ 2

rand = (
1
2)

2 for
each element on the diagonal; this set is normalised such that all
µa fall into the d-dimensional unit hypercube, [0, 1]d . Each arm has
an associated multi-variate Gaussian reward distribution, with the
aforementioned true mean vectors, µa , and randomly drawn covari-
ance matrices with covariances ranging from perfectly negatively
correlated to perfectly positively correlated, with an average variance
magnitude of σ 2

P,a = 0.05 unless otherwise specified.
In order to test whether GUTS can learn to identify the optimal

arm, under different settings of the cool-down parameter (i.e., when
a user cannot answer all the questions otherwise generated by the
algorithm), we run GUTS on random 20-arm MOMABs with ran-
domly generated polynomial utility functions of order 3. In Figure
4, we observe that the regret curves of GUTS (on the left) are all
highly sub-linear. At 500 arm-pulls, GUTS with cool-down 0 has
only 16.9% more cumulative regret than Thompson Sampling pro-
vided with the ground-truth utility function (cheat-TS). Furthermore,
we observe that the number of questions for cool-down behaves
as we expect: first queries are not yet significant; then the queries
become significant leading to a higher number of queries; but the
number of queries quickly becomes sub-linear as the approximation
of u(µ) becomes better. We thus conclude that GUTS can adequately
approximate the utility function in order to identify the optimal arm.

For cool-down 5, GUTS has 29.8% more regret than cheat-TS
at 500 arm pulls, for cool-down 10, 36.0% and, for cool-down 20,

5

Figure 4: Regret (left) and number of queries posed to the user (right), as a function of arm-pulls, averaged over 5 random, 2-objective,
20-arm MOMAB instances with random utility functions or order 3, with noise ε = 0.1 on the comparisons of the user (about 2% of
the optimal utility), for GUTS with different cool-downs.

41.2%. However, cool-down 5 requires only 42.8% of the queries
with respect to cool-down 0, and cool-downs 10 and 20 only 25.9%
resp. 14.6%. In other words, the increase in regret is less steep than
the reduction in the number of queries posed to the user. We hypoth-
esise that this is because GUTS continues learning about the arms
before the next question is asked, yielding more information per
query. We thus conclude that GUTS remains an effective algorithm
when the user cannot answer a query at every arm-pull.

To test whether GUTS can learn effectively in random MOMABs
with an increasing number of objectives, and the effect of (disabling)
significance testing, we run GUTS with cooldown 10 on 2-, 4, and
6-objective 20-arm random MOMABs with randomly generated
polynomial utility functions of order 3 (Figure 5). We chose the
cooldown of 10 to simulate a human decision maker that is only
able to answer a comparison query after every ten arm-pulls. As
can be seen from the figure, the curves remain sub-linear, but less
so for higher numbers of objectives, and the difference in regret
with cheat-TS increases. This can be explained by the fact that
GUTS suffers from the curse of dimensionality, as it has to estimate
higher-dimension utility functions, while cheat-TS does not (it is
provided with the ground-truth utility function, so it only has to
optimise a scalar utility.) This was to be expected; cheat-TS has an
unfair advantage, and is only included as a theoretical reference.
For this experiment with the cool-down set to ten, the number of
queries does not yet reach the point where it starts to be sub-linear.
However, we do observe that while significance testing does slightly
but consistently decrease the number of queries posed to the user, it
has no negative effect on regret.

Finally, in order to check how GUTS handles different levels
of noise in the comparisons of the user, we run GUTS on 20, 2-
objective, 20-arm, random MOMAB instances with randomly gen-
erated polynomial utility functions of order 3 (Figure 6). These
randomly generated utility functions have utilities ranging from
about 1 for the worst arm to 5 for the best arm. We use 2%, 10%, 20%
of this utility as noise, i.e., ε = 0.1, 0.5 and 1.0. For ε = 0.1 and 0.5,
we observe very similar regret curves, and no significant difference
in the number of queries. For ε = 1.0 we observe the regret and
number of query curves suddenly going up; this is due to 3 of the
runs, where GUTS suddenly more often samples a non-optimal arm,

after a series of erroneous comparisons. However, as the number of
queries also goes up, because GUTS becomes unsure what the best
arm is, we observe that GUTS does converge back to the optimal
arm after a while in two of the three individual runs before the run
ends (in the third one the swerve happens closer to the end of the
run). We thus conclude that GUTS is robust against different levels
of noise.

To summarise, we conclude that: GUTS can effectively handle
non-linear utility functions in order to minimise regret in online in-
teractive MORL for MOMABs; GUTS can handle users that answer
a comparison query at every arm-pull; and significance testing to
prevent asking irrelevant queries in the beginning has no negative
effect on the regret.

5 RELATED WORK
Several papers exist that study offline multi-objective reinforcement
learning in MOMABs [3, 15, 16, 41]. In contrast to the online in-
teractive MORL, which we study in this paper, these papers focus
on producing a coverage set in a separate learning phase, without
interacting with the user. After this learning phase, the interaction
with the user to find the optimal alternative from the coverage set
needs to be done in a subsequent selection phase. In the work we
present here, we are interested in an online setting, in which we aim
to minimise online user regret, by estimating the utility function of
the user during learning about the MOMAB through arm-pulls.

Relative bandits [40, 43] are also a different but related setting to
online interactive learning for MOMABs. Similar to our interactive
online MORL for MOMABs, relative bandits assume a hidden util-
ity function which can be queried to obtain pairwise comparisons.
Contrary our setting though, the rewards (i.e., reward vectors) cannot
be observed, and the comparisons are made regarding single arm
pulls, rather than the aggregate information over all previous pulls
of a given arm as in GUTS (and ITS). The closest algorithms in this
field are RUCB [43] and Double Thompson Sampling [40] which
keep a preference matrix to determine which two arms to pull in
each iteration.

In evolutionary computing for multi-objective problems, user
preferences have been used to bias the search area of the evolutionary
algorithm during the optimisation process [6, 13, 34]. There is also

6

Figure 5: Regret as a function of arm-pulls averaged over 5 random, 20-arm MOMAB instances with 2 (left), 4 (middle) and 6 (right)
objectives, with random utility functions or order 3, with noise ε = 0.1 on the comparisons of the user (about 2% of the optimal utility),
for GUTS with cool-down 10, and with or without significance testing (s1 or s0).

Figure 6: (left) Regret as a function of arm-pulls, (right) number of queries posed to the user as a function of arm-pulls, averaged
over 20 random, 2-objective, 20-arm MOMAB instances with random utility functions or order 3, with noise ε = 0.1, 0.5 and 1.0 (resp.
2%, 10%, 20% of the optimal utility) on the comparisons of the user, for GUTS with cool-down 5.

some work in incorporating user guidance in sequential decision
problems (e.g., [10, 37]), focusing on single-objective problems.

In multi-objective sequential planning [4], combinatorial decision-
making [38], and cooperative game theory [20] preference elicita-
tion w.r.t. (linear) utility functions has been applied as well. These
methods however, apply linear programming or equation solving to
induce constraints for their respective planning problems, rather than
Bayesian learning. It would be interesting to extend our methods
to apply to these problem classes and create Bayesian methods for
learning. We will discuss multiple options for future work in the
next section.

Gaussian processes for user preference elicitation was introduced
by [12] and have been used, e.g., in animation design for computer
graphics [7] or in learning to rank [11]. Other approaches to user
preference elicitation are for example to model the user’s prefer-
ences as a mixture of Gaussians [9] or as a partially observable
Markov Decision Process [5]. We believe that Gaussian processes
are more expressive than mixture of Gaussians, and more practi-
cal than POMDPs because they require only few data-points. We
believe that partially unknown utility functions that take the multi-
objective value of policies as input are a more natural way to express
preferences in the context of multi-objective decision making.

6 DISCUSSION
In this paper we have proposed Gaussian-process Utility Thompson
Sampling (GUTS) for interactive online multi-objective reinforce-
ment learning in MOMABs. Contrary to earlier methods, GUTS
can handle non-linear utility functions, which is an essential feature
for multi-objective RL algorithms. We have shown empirically that
GUTS can effectively approximate non-linear utility functions for
the purpose of selecting the optimal arm, leading to only little extra
regret if a query can be posed to the user at every arm pull. We
further have shown experimentally that in addition to the regret, the
number of queries is also sub-linear.

We also tested what the effect is of users not being able to answer
a query with every arm-pull. In this case—even if the number of
queries is strongly reduced—the regret remains sub-linear, albeit
higher than if a query can be posed at every time-step. Therefore, we
conclude that GUTS is robust against less questions being answered
than generated. Furthermore, our experiments indicate that GUTS is
robust against noisy comparisons.

We note that all conclusions are based on empirical evaluations
rather than theoretical bounds. This is due to the usage of Gauss-
ian Processes (GPs) that are hard to analyse theoretically w.r.t. the
results we need. However, we believe using GPs is essential, be-
cause as a non-parametric function approximator GPs can fit any

7

utility function without assuming a model-space. This, we believe,
outweighs the loss of potential for a theoretical regret bound.

In future work, we aim to test GUTS on real-world problems (e.g.,
multi-objective decision making in epidemic mitigation [21], or
traffic problems [42]), and integrate GUTS with an effective query-
answering interface for human decision makers. Furthermore, we
want to investigate the potential of asking more complex queries than
just pairwise comparisons, such as ranking and clustering, which
have recently been proven to be effective in preference elicitation on
Pareto-fronts from multi-objective decision problems [42].

We also aim to extend our approach to sequential decision making
settings, i.e., MOMDPs [23, 27, 36] and even MOPOMDPs [28,
39], and other problems [4, 17, 30] (such as multi-agent problems
[20, 22]) where interaction with the user based on a probabilistic
modelling approach with respect to user utility could be beneficial.

ACKNOWLEDGEMENTS
The first author was a postdoctoral fellow of the Research Foundation
– Flanders (FWO) (grant number 12J0617N), at the time when this
research was conducted. This research was in part supported by
Innoviris – Brussels Institute for Research and Innovation. Pieter
Libin was supported by a PhD grant of the Research Foundation –
Flanders (FWO) and the VUB research council (VUB/OZR2714).

REFERENCES
[1] S. Agrawal and N. Goyal. 2012. Analysis of Thompson Sampling for the Multi-

armed Bandit Problem.. In COLT. 39–1.
[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. 2002. Finite-time analysis of the multi-

armed bandit problem. Machine learning 47, 2-3 (2002), 235–256.
[3] P. Auer, C.-K. Chiang, R. Ortner, and M. M. Drugan. 2016. Pareto front identifi-

cation from stochastic bandit feedback. In AISTATS. 939–947.
[4] N. Benabbou and P. Perny. 2015. Combining Preference Elicitation and Search in

Multiobjective State-Space Graphs. In IJCAI. 297–303.
[5] C. Boutilier. 2002. A POMDP formulation of preference elicitation problems. In

AAAI. 239–246.
[6] Jürgen Branke and Kalyanmoy Deb. 2005. Integrating user preferences into evolu-

tionary multi-objective optimization. In Knowledge incorporation in evolutionary
computation. Springer, 461–477.

[7] Eric Brochu, Tyson Brochu, and Nando de Freitas. 2010. A Bayesian interac-
tive optimization approach to procedural animation design. In Proceedings of
the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Eurographics Association, 103–112.

[8] E. Brochu, V. M. Cora, and N. De Freitas. 2010. A tutorial on Bayesian opti-
mization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv:1012.2599 (2010).

[9] Urszula Chajewska and Daphne Koller. 2000. Utilities as random variables:
Density estimation and structure discovery. In Proceedings of the Sixteenth confer-
ence on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.,
63–71.

[10] Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier, and Sang-Hyeun Park.
2011. Preference-based policy iteration: Leveraging preference learning for re-
inforcement learning. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 312–327.

[11] W. Chu and Z. Ghahramani. 2005. Extensions of gaussian processes for ranking:
semisupervised and active learning. Learning to Rank (2005), 29.

[12] W. Chu and Z. Ghahramani. 2005. Preference learning with Gaussian processes.
In ICML. 137–144.

[13] Kalyanmoy Deb, Ankur Sinha, Pekka J Korhonen, and Jyrki Wallenius. 2010.
An interactive evolutionary multiobjective optimization method based on pro-
gressively approximated value functions. IEEE Transactions on Evolutionary
Computation 14, 5 (2010), 723–739.

[14] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. 2015. Gaussian processes for
data-efficient learning in robotics and control. IEEE Trans. on Pattern Analysis
and Machine Intelligence 37, 2 (2015), 408–423.

[15] Madalina M Drugan. 2017. PAC models in stochastic multi-objective multi-armed
bandits. In GEC. 409–416.

[16] M. M. Drugan and A. Nowé. 2013. Designing multi-objective multi-armed bandits
algorithms: A study. In IJCNN. IEEE, 1–8.

[17] J.P. Dubus, C. Gonzales, and P. Perny. 2009. Multiobjective optimization using
GAI models. In IJCAI. 1902–1907.

[18] J. P. Forgas. 1995. Mood and judgment: the affect infusion model (AIM). Psycho-
logical bulletin 117, 1 (1995), 39.

[19] Harold Hotelling. 1931. The generalization of Student’s ratio. Annals of Mathe-
matical Statistics ii (1931), 360–378.

[20] A. Igarashi and D. M. Roijers. 2017. Multi-Criteria Coalition Formation Games.
In Algorithmic Decision Theory.

[21] P. Libin, T. Verstraeten, K. Theys, D. M. Roijers, P. Vrancx, and A. Nowé. 2017.
Efficient evaluation of influenza mitigation strategies using preventive bandits. In
ALA. 9 pages.

[22] P. Mannion, J. Duggan, and E. Howley. 2017. A Theoretical and Empirical
Analysis of Reward Transformations in Multi-Objective Stochastic Games. In
AAMAS. 1625–1627.

[23] Sriraam Natarajan and Prasad Tadepalli. 2005. Dynamic preferences in multi-
criteria reinforcement learning. In ICML.

[24] C. E. Rasmussen. 2006. Gaussian processes for machine learning. (2006).
[25] D. M. Roijers. 2016. Multi-Objective Decision-Theoretic Planning. Ph.D. Disser-

tation. University of Amsterdam.
[26] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. 2013. A Survey of

Multi-Objective Sequential Decision-Making. JAIR 48 (2013), 67–113.
[27] D. M. Roijers and S. Whiteson. 2017. Multi-Objective Decision Making. Synthesis

Lectures on Artificial Intelligence and Machine Learning 11, 1 (2017), 1–129.
[28] Diederik Marijn Roijers, Shimon Whiteson, and Frans A Oliehoek. 2015. Point-

Based Planning for Multi-Objective POMDPs.. In IJCAI. 1666–1672.
[29] D. M. Roijers, L. M. Zintgraf, and A. Nowé. 2017. Interactive Thompson Sampling

for Multi-objective Multi-armed Bandits. In Algorithmic Decision Theory. 18–34.
[30] E. Rollón. 2008. Multi-Objective Optimization for Graphical Models. Ph.D.

Dissertation. Universitat Politècnica de Catalunya.
[31] S. Siegel. 1956. Nonparametric statistics for the behavioral sciences. (1956).
[32] E. Sirakaya, J. Petrick, and H.-S. Choi. 2004. The role of mood on tourism product

evaluations. Annals of Tourism Research 31, 3 (2004), 517–539.
[33] G. Tesauro. 1988. Connectionist Learning of Expert Preferences by Comparison

Training.. In NIPS, Vol. 1. 99–106.
[34] Lothar Thiele, Kaisa Miettinen, Pekka J Korhonen, and Julian Molina. 2009. A

preference-based evolutionary algorithm for multi-objective optimization. Evolu-
tionary computation 17, 3 (2009), 411–436.

[35] W. R. Thompson. 1933. On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika 25, 3/4 (1933),
285–294.

[36] C Ch White and Kwang W Kim. 1980. Solution procedures for vector criterion
Markov decision processes. Large Scale Systems 1, 4 (1980), 129–140.

[37] Aaron Wilson, Alan Fern, and Prasad Tadepalli. 2012. A bayesian approach
for policy learning from trajectory preference queries. In Advances in neural
information processing systems. 1133–1141.

[38] N. Wilson, A. Razak, and R. Marinescu. 2015. Computing Possibly Optimal
Solutions for Multi-Objective Constraint Optimisation with Tradeoffs. In IJCAI.
815–822.

[39] Kyle Hollins Wray and Shlomo Zilberstein. 2015. Multi-Objective POMDPs with
Lexicographic Reward Preferences.. In IJCAI. 1719–1725.

[40] Huasen Wu and Xin Liu. 2016. Double Thompson Sampling for Dueling Bandits.
In NIPS. 649–657.

[41] S. Q. Yahyaa, M. M. Drugan, and B. Manderick. 2015. Thompson Sampling in
the Adaptive Linear Scalarized Multi Objective Multi Armed Bandit. In ICAART.
55–65.

[42] L. M. Zintgraf, D. M. Roijers, S. Linders, C. M. Jonker, and Nowé A. 2018.
Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision
Making.. In AAMAS. To Appear.

[43] M. Zoghi, S. Whiteson, R. Munos, and M. De Rijke. 2014. Relative Upper
Confidence Bound For The K-Armed Dueling Bandit Problem. In ICML. 10–18.

8

	Abstract
	1 Introduction
	2 Background
	3 Gaussian-process Utility Thompson Sampling
	4 Experiments
	4.1 A 5-arm MOMAB
	4.2 Random MOMABs

	5 Related work
	6 Discussion
	References

