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ABSTRACT

With today’s electricity grid being penetrated with more and more
intermittent energy sources, the need arises to match demand for
electricity with electricity generation, in order to maintain the
stability of the grid. Demand response has been proposed as a
mechanism that aims to solve this problem, by stimulating the shift
of electricity demand towards production peaks. In previous work
individual devices were trained using fitted-Q iteration to shift the
consumption of electrical energy towards low-price periods, while
still guaranteeing user comfort. This paper shows that controlling
multiple devices with one independent agent per device is more
cost-effective compared to a centralized agent. The paper expands
the setting with an energy consumption constraint on the level of
the household. The objective is to spread the energy consumption of
the devices during low price periods as much as possible in order to
avoid overloading the grid. Preliminary results for both centralized
and independent learners show that these agents are capable of
reducing the amount of constraint violations minimally but fail to
reduce violations to zero.
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1 INTRODUCTION

Every day, the electric grid is required to deal with more and more
distributed sources of variable electric energy generation [18]. This
causes electric grids to face a more difficult challenge for maintain-
ing grid stability (i.e., at every point in time, generation of electricity
needs to equal consumption). The intermittent character of these
sources forces Transmission and Distribution System Operators
(TSO and DSO) to shift towards a system that focusses on man-
aging the demand, rather than the supply of electricity, in order
to maintain a strict balance between the two. Demand response
technologies can be applied to incentivize end users to switch on
electric devices when a lot of renewable electric power is gener-
ated, and switch them off when generation is low. One example is
price-based demand response [1] with a day-ahead market price for
electricity. In this scheme, a consumer receives an electricity price
profile. This price profile contains a different electricity price for
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every hour of the next day. It is then the consumer’s role to optimize
its energy consumption which should result in the shifting of elec-
tric loads to low-price periods. When a cluster of consumers buys
into these demand response schemes, a large part of the demand for
electric energy can be shifted to time periods when high amounts
of renewable energy generation are available. In this way, demand
response can enable a grid with higher penetration of renewable
energy.

With the ongoing electrification of transport and heating in
mind, for a single household demand response could result in a
heat pump, electric vehicle, electric water heater, cooking stove, etc.
all drawing electric power at more or less the same time. Therefore,
additional restrictions should be put in place in order to prevent
the feeder line of the residence from operating during overcapacity.
Intelligent agents can control these devices and cooperate to mini-
mize the global electricity cost of the house while avoiding damage
or overheating of the feeder line.

In this paper, the simulated residence will have a combination
of interruptible and uninterruptible loads. The interruptible loads
are a heat pump (HP) and an electric water heater (EWH). The
uninterruptible load is a dishwasher (DW). The operation of each
individual device adheres to device-specific constraints. In the sec-
ond part of this paper, a capacity constraint on the feeder is taken
into consideration for the residence as a whole. Two control designs
are compared. One solution trains a single reinforcement learning
agent that controls all devices at once. The other trains one rein-
forcement learning agent per device. In the latter case, the technique
of difference rewards [30] is applied to coordinate the independent
learners indirectly. Both designs use the fitted Q-iteration algorithm
(FQI) [12, 21] to train the agents.

The contributions of this paper are the following: (1) it shows that
FQI can be applied in a multi-agent setting when combined with
difference rewards; (2) it shows that independent agents outperform
the centralized agent and learn more cost-effective policies.

2 BACKGROUND

2.1 Reinforcement Learning

Reinforcement learning (RL) [27] is a machine learning technique
that allows an agent to learn by trial-and-error while interacting
with an environment, given some numerical feedback known as a
reward signal. The environment is modelled as a Markov decision



process (MDP) M = (S, A, T,y, R) [20], where S, A are the state and
action spaces, T: S X A X S — [0, 1] is a probabilistic transition
function, y is a discount factor determining the importance of future
rewards and R: S X AX S — R is the immediate reward function.
The reinforcement learning agent needs to learn a policy, ie. a
mapping between states and actions that maximizes the received
rewards.

The transition function T in an MDP is characterized by the
Markov property. This means that the current state is only depen-
dent on the previous state-action combination, and not on those
before the previous time step. It is only feasible to solve an MDP
when all state variables are observable. In the real world this is not
the case. An agent that controls a heat pump will never have access
to the temperature of the walls in the house it provides heating
to. This is an important feature however, as the walls transfer heat
from the outside world to the building’s interior and vice versa.
Such a setting would therefore be characterized by a Partially Ob-
servable MDP (POMDP) [11] where the Markov property does not
hold. The learning agent can use a history of states to acquire a
better approximation of the underlying state s; and recover the
Markov property [14].

2.2 Fitted Q-iteration

FQI is a batch reinforcement learning algorithm for value iteration
that was first introduced by Ernst et al. [12]. Riedmiller et al. later
proposed to use neural networks to approximate the Q-function
[21]. The algorithm gathers experience online according to a preset
policy and then engages in an offline training loop. Within the
loop, targets are calculated according to equation 1, which uses
the current estimation of the Q-value of the next state. The second
part of the loop entails the learning of a mapping from state-action
pairs S X A to the Q-value targets. If enough data is collected, the
Q-value estimations will converge.

Q(s¢,a) = c(s¢,a,8¢41) + Y{lﬂeig Q(st+1,a) (1)

2.3 Multi-agent Reinforcement Learning

When transitioning to the multi-agent RL (MARL) scenario, we
consider the case of independent learners (IL) [6] interacting in
the same environment. The reward signal is usually an important
aspect in a MARL system as it can determine the quality of the
resulting collective behaviour. Two common choices are the local
reward (L) providing local information to each individual agent
depending on its own behaviour and the global reward (G) which
expresses the total system utility and should align the system and
agents’ interests. A characteristic of our problem setting is the
alignment between the local and global rewards, since minimizing
the electricity consumption price for each device leads to a global
minimization of the household’s energy bill. Nevertheless, in order
to allow the agents to coordinate and adhere to a maximum capacity
constraint, a richer reward signal is necessary.

Difference reward (D) [30] is a reward signal that provides each
agent with its own individual contribution to the total reward of
the system, solving the credit assignment problem. D filters the
noise in the reward signal attributed to the presence and actions of
other agents. Given a global system utility G, the difference reward

for agent i is expressed as:
Di(z) = G(z) - G(z-) )

where z denotes a general term for either state, action or state-
action pair, according to the considered domain, and G(z—;) is the
global utility of a system from which the contribution of agent i is
eliminated.

3 METHODS
3.1 Problem Setting

The problem setting in this paper is one where multiple devices,
with both interruptible and uninterruptible loads, are managed by
a demand response application. Every time step ¢, an agent has
to decide whether to turn a device on or to let it remain idle. The
duration of a time step is set to 15 minutes with ¢ € {1...96}, as is
usually done in similar smart grid use cases [4, 5, 7, 10, 23-25, 28].
The optimization horizon H of each agent is therefore 96 time
steps or one day. At the end of the day, each agent receives the
same global day-ahead electricity market price A. In order to shift
the electric loads to low-price periods, the agents controlling the
devices are tasked with a cost-minimizing objective.

The devices simulated in this paper are a HP, EWH and DW.
Each device is expected to minimize costs, while executing the
following tasks:

1) Heat Pump: The HP maintains the interior air temperature
T of a building between two temperature constraints 7™ and
T™aX These are set to 19°C and 23°C respectively, while the rated
power of the device is set to 3 kW. These parameters were chosen
in accordance to [23]. Due to the thermal inertia of the building, the
walls function as thermal storage. The heat stored in these walls is
dependent on both Tt“” and the outside air temperature TY%!. As
Tt“ir goes down, the heat stored will be released back into the area
to slow down the cooling process.

2) Electric Water Heater: The EWH in this setting has a rated
power of 2.4 kW and a water buffer with a volume of 160 litres.
The water contained in an EWH is stratified into different layers.
The temperature of the top layer T*! is maintained between two
temperature constraints of 45°C, T™in and 60°C, T™9%% | similar
to [10]. A time series of real tap water demand is included in the
simulation. When an amount of water m; is drawn from the tank,
heat is extracted proportional to m;.

3) Dishwasher: The DW is assumed to be fully loaded at the start
of every day and needs to be turned on once a day. If the agent fails
to attain this goal, it will incur a penalty.

Two agent designs are considered for this problem setting. One
design includes a central agent which controls all devices at once.
The second design, IL, trains one agent per device, where difference
reward D is used to coordinate the agents. Agents have to take
into account device-specific constraints, which are enforced by
device-specific backup controllers. This paper illustrates that the
FQI implementation can be beneficial for a multi-agent system
when combined with difference reward D.

3.2 Markov Decision Process

3.2.1 State space. Each device has its own state s. In the case of
IL, each agent has access to the state of the device it controls. For
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Table 1: Observed state for every device.

the centralized setting, these states are concatenated into one larger

state space. Table 1 describes the states of the different devices. The
EWH’s state contains the output temperature Tt0 uiput
in the buffer, which is the water temperature at the output valve
of the EWH. Time step ¢ and tap water demand m; are included

so that the agent might learn a time-variant pattern. All three

of the water

devices include the last physical action affly * that was executed.
The HP adds to that the interior air temperature T#" and the

outside temperature TY!.

3.2.2  Action space and backup controller. The interruptible loads,
the HP and EWH, each have their device-specific backup controller.
This controller takes as input the agent’s chosen action, evaluates
the constraints and overrides the chosen action a; with af hys if the
constraints are violated. Equation 3 formalizes this procedure. For
the HP and EWH, T equals Ttai " and Tto utput respectively. Both a;

and af "9 have an action space A = {0, 1}, in which 0 corresponds
to the idle action, and 1 corresponds to employing the full electric
power potential of the device to heat the corresponding medium.

™Y = 1,if T < Tmin

"V = 0,if T > TMax 3)
afhys _

B(st,at) =

ag

3.2.3 Cost function. Every physical action a‘? h9S leads to a cer-
tain amount of energy AE that is used during time step ¢, depending
on the energy consumption of each device d € D:

AE; = Z AE¢ o
deD
The cost of this energy is described by equation 5. A is the day-
ahead market price of electricity, which is variable throughout the
day and is communicated to the agents before training. This cost
serves as an input to the Bellman update presented in equation 1.

c(se, ar, se+1) = AEtA¢ (5)
As a consequence, optimizing on equation 5 will result in all
devices turning on at the same time during the lowest price-periods.
This will lead to consumption peaks, thus straining the grid. To
avoid this scenario, a constraint will be added stating that, at all
times, the household’s total energy consumption should be below
a specific threshold 7. Otherwise, the devices incur a penalty. The
penalty is proportional to the amount by which the threshold is
exceeded. In this case, if AE; > 7, we use AEt instead for the
consumption in equation 5, computed as:

AE; = (AE; — )M + AE; (6)

where 7 is the threshold, and M a multiplier weighing the impor-
tance of the penalty. Note that the penalty is applied on the energy
consumption, before multiplying with the price. The centralized
learner will use equation 6 to learn that not all devices are allowed
to be turned on at the same time.

Independent learners need a way to assign credit to the different
agents. The difference rewards in equation 8 solve this credit assign-
ment problem. IL should anti-coordinate thanks to the difference
rewards, which means that during the same low price period one
device should turn on a little bit earlier (or later) than the other
devices so that they do not violate the grid constraint collectively.
The device i’s consumption when penalized (i.e., when AE; > 7)
will be different depending on the value of G_;, calculated as:

G = Z AE? @)
deD
d#i
i i )
D; = AE§ _ AE;M + AE; . ,G_i>1 ®)
(AE; —1)M+AE; ,G; <t

Thus, devices that are not involved in overloading the grid (such
as the DW in our experiments) will receive a lower penalty than
the ones that are. The goal of these difference rewards is to have
the IL anti-coordinate.

When the total device consumption does not exceed the thresh-
old (i.e., when AE; < 7), then the difference rewards are equivalent
to the local consumption of each device i: D; = AE;. The final cost
for each device i will be computed using D; in equation 5.

3.3 Implementation

Algorithm 1 shows the implementation details of FQI for the ap-
plication that is discussed in this paper. First, experience tuples
(Sk» Ak Sk+1, AEL) are collected. AEy is the electric energy con-
sumed during the time step at which that tuple was experienced.
These tuples are saved in a data batch # and used as input to
the algorithm along with a day-ahead market price A. Training
is postponed until the end of an episode, which is a day in this
paper. During the training procedure, an approximator O, fits the
experience following a receding horizon approach (line 3) [5]. This
implementation of FQI uses one Q; per time step t. Therefore there
are 96 approximators in this algorithm. For every tuple k in 7,
Q-value targets Q. are recomputed using the day-ahead electricity
cost Ay, the electric energy AEy., and Oy 11, which is the approxima-
tor for the next time step (line 5 and 6). When applying the Bellman
equation in this way, Q; will be updated using the estimates of
Qr+1 (except Qgs which will only receive the final cost).

Each approximator was trained with a small fully connected
neural network, using Adam [16] as the optimizer. In order to
improve stability, costs were normalized. The Q-update is adjusted
according to the following scheme:

Qt(_H—t

where H = 96 is the horizon. As ¢ is normalized, Q; € [0, 1] at
every time step, while still approximating the expected return. Note
that, as the agent’s goal is to minimize the total cost, equation 9
will use the smallest estimate Qt+1.

(ck + (H =t + 1) min Qp41(se41, ar)) ©)
acA



Algorithm 1 Fitted Q-iteration

1: Inputs: F = {sk,ak,skH,AEk}f;, A
2: Vsp €8, a GA:QHZO
3: fort=H-1,...,1do

4 fork=1,...#F do

5: Cl < /bAEk

6: Ok « ¢ +min Qr11(Sk+1,a)

acA

7. end for

8:  use approximator to obtain Q; from
TS = {([St, at] B Qk)v k= 1, ...,#7:}

9: end for

In the case of the independent learners, the above procedure
cannot be implemented in a straightforward way, as the issue of
credit assignment might arise. This is where difference rewards start
playing an important role. In the unconstrained case, the difference
reward each agent receives is equivalent to the agent’s local reward
(i.e., the negation of the cost incurred by that respective device
through its electricity consumption). Difference rewards show their
true value in the constrained case, when the agents violate the
grid constraint collectively and receive a penalty, as it allows every
agent to only receive the portion of the penalty for which it is
responsible.

4 EXPERIMENTS

In all simulations, the energy consumption of a household (com-
posed of a HP, EWH and DW) is simulated for 40 days. At the
end of each day the agent receives the day-ahead price profile 1.
The agents use FQI to learn a control policy that will optimize the
cost for the next day based on A. The policy used by each agent is
e-greedy, with € = 1 during the first day and a decay of 0.1 with
each ensuing day. This means that from day 10 onwards the policy
is fully greedy. The discount factor y is 1.

Q-values are approximated with one fully connected neural net-
work for each timestep, and are optimized using Adam, with a
learning rate of 0.01, 1 = 0.9 and f = 0.999. Each net is trained
for maximum 3000 epochs. The training is interrupted if the loss
does not improve for 100 consecutive epochs. Additionally, each
net is fed with a history of four consecutive states in order to make
up for the partial observability of the environment, as discussed in
section 2.1. Because this technique recovers the Markov property,
the problem setting is explicitly modelled as an MDP in section 3.2,
and not as a POMDP.

4.1 Unconstrained learning

In this first simulation, there is no maximum consumption con-
straint imposed on the household. Validation of the correct work-
ings of the most basic setup is thus provided here. The centralized
learner receives the joint state of all individual devices and decides
for each device which action it should take. For this setting, the 96
neural networks are composed of two fully connected hidden layers
of five neurons each. In the IL setting, each device is equipped with
an independent FQI learner which uses its own experience. The
neural nets are composed of one hidden layer with eight neurons.
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Figure 1: Detailed consumption of independent learners
over a span of 5 days. Top: HP. Middle: EWH. Bottom: Ac-
tions executed by the respective devices.

Figure 1 shows an example of the behaviour of the independent
learners during the last five days of the simulation. The top chart
shows the inside temperature Tt“ir (blue), bound between the com-
fort settings (T™" and T™%* in red), and the outside temperature
T?%! (purple). The middle chart shows the output temperature of

the EWH Tto utput (blue), also bound between its respective
and T™%* (red), and the tap water demand m; (purple). The bottom
chart depicts the price (green) at each time step, as well as the
timing at which devices are turned on or off. These are plotted with
different heights to improve readability.

Due to the nature of the day-ahead market setting, the agents are
optimising the cost on a per-day basis. The consequences of this are
visible in figure 1, especially in the top chart (HP). Systematically,
the agent controls T#" to equal ™" at the end of every day,
since there is no benefit in spending more energy to heat the room.
Consequently, the next day, the HP agent will have to heat the room
irrespective of the electricity price. This has a smaller impact on
the EWH, as this device is built specifically to have a larger thermal
capacity.

Peaks in electricity price are usually avoided as can be seen in the
bottom chart of figure 1. On day 38, we notice that the EWH is forced
to turn on during a high price period, due to the sudden peak in
water consumption. The DW also learned to turn on once a day on
low price periods, while taking into account the uninterruptibility
property of a cycle.

The performance of independent and centralized learners is
compared in figure 2. The chart shows the cumulative electricity

Tmin

Price [€c / kWh]
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Figure 2: Cumulative cost for forty days with unconstrained
agents. The chart represents an average over 21 runs per
agent design. IL achieve 9.65% lower cost on average com-
pared to the centralized agent after forty days.
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Figure 3: Number of times the threshold was exceeded per
day, for centralized learners.

cost over 40 days. During the first few days, there is virtually no
difference in cost due to the high exploration rate. However, starting
from day 10, independent learners clearly manage their devices
better than the centralized learner. This is to be expected, as the
centralized learner’s state and action space combines the states
and actions of all household devices. Therefore, it has a bigger
parameter space to search through to find a good approximation of
the Q-function.

4.2 Constrained learning

The previous section focused entirely on minimizing the cost. How-
ever, this means the devices will often be turned on together when
the price is low, thus straining the electricity grid. In order to spread
energy consumption over the day, the previous experiment is ex-
tended with an additional constraint: minimizing the cost while
satisfying a grid constraint AE; < .

For the experiments in this section, a threshold of 7 = 4 x 10°
Ws is chosen. This corresponds to an electric energy usage of 1.11
kWh during one time step, which serves as a proxy for the capacity
constraint on the feeder. 7 is exceeded whenever the HP and EWH
are turned on at the same time, but not when either of these devices
are turned on together with the DW. A multiplier M = 4 is chosen
to penalize constraint violations. The other settings are kept equal
to the unconstrained simulations.

—— unconstrained
constrained
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Figure 4: Number of times the threshold was exceeded per
day, for independent learners.

Figure 3 shows the number of times threshold 7 was exceeded
during each day by the centralized learner in both the unconstrained
and constrained case. From day 10 onwards, when the agents are
operating fully greedily, the constrained learners systematically
exceed the threshold less often than the unconstrained ones. This
indicates that the penalty is taken into account. However, the vari-
ability is often larger in the constrained case. Nevertheless, the
constrained learner exceeds the threshold every single day, and is
unable to fully anti-coordinate its devices.

Domain-specific dynamics play a significant role in this demand
response setting. While the change in outside temperature is quite
smooth through time, tap water demand varies rapidly and is quite
unpredictable. Therefore, it might be easier to anticipate the HP’s
usage compared to the usage of the EWH. This is especially no-
ticeable on day 20, where an unusually large amount of water is
requested, forcing the EWH to be active immediately afterwards
for a duration of 2 to 5 hours. This results in a consistently high
number of threshold violations.

The same results for IL are visualized in figure 4. The constrained
independent learners use the same parameter settings as the un-
constrained ones. 7 = 4x 10% and M = 4. Agents should anti-
coordinate thanks to the difference rewards implementation as seen
in equation 8, but IL with constraints clearly does not outperform
IL without constraints. Additionally, the centralized learner from
figure 3 attains lower threshold violation counts. In the final days
of the simulation in figure 4 the constrained learner achieves lower
threshold violations on average, but further research is necessary
to develop learners which can minimize the amount of violations
effectively.

4.3 Discussion and Future Work

Section 4.1 shows the benefit of having one learner per device in
the demand response problem presented in this paper. IL achieve on
average an electricity cost that is 9.65% lower than in the centralized
case and are thus more effective in shifting electric load towards
low-price periods. However, when confronted with an extra con-
straint on the level of the house, IL experience more difficulty to
satisfy this constraint. Both agent designs fail to keep energy usage
below the threshold, but show promising preliminary results as the
constrained learners have a lower count of threshold violations in
the long term.



Future work will concentrate on developing adequate learners
for this problem in a number of ways. Firstly, it might be worth
looking at this setting as a Multi-objective Reinforcement Learn-
ing (MORL) [22] problem, on which a naive linear scalarization is
applied. Methods such as [2, 13, 19] were previously succesfully im-
plemented in combination with FQI [3]. More explicit cooperation
and coordination mechanisms between the agents could help in
more effectively aligning when to turn on or stay idle, rather than
the implicit approach through anti-coordination in this paper. An
example would be to use Coordinating Q-Learning [8, 9], where
the agents mostly act independently, but learn on which states
they should take the other agents into consideration. Additionally,
auxiliary tasks [15] could be taken into account, such as predicting
the tap water demand, to investigate if learning on such secondary
pseudo-rewards can help the agent(s) attain a better performance.
Finally, the price profile is implicitly provided since it is used in
the calculation of the targets for the different Q-networks. This
information could be explicitly provided by including A in the state
space of the agent, so that it can directly learn how the price is
related to the immediate cost ¢, and the expected cost of the rest
of the trajectory.

5 RELATED WORK

Reinforcement learning has been used many times over to tackle De-
mand Response problems in previous research. In [29], Q-learning
is used in order to schedule devices according to consumer choices
and time preferences. Sancho-Tomas et al. [26] extended No-MASS
to include demand response strategies, and used Q-learning to opti-
mize load-shifting and charging and discharging of batteries. In [10],
model-based RL was used to maximize self-consumption of local
photovoltaic production, in the case of a domestic hot-water buffer.
Taking the service provider’s perspective, [17] uses Q-learning in
a dynamic price demand response setting, in order to adaptively
decide the retail price of energy.

FQI specifically matured in recent research as a valuable tech-
nique when tackling price-based demand response problems. Both
clusters of devices and individual appliances were considered. In
[10, 23, 28], thermostatically controlled loads are controlled as single
devices in a day-ahead market setting. Ruelens et al. include fore-
casts of exogenous features and a model-free Monte Carlo method
in combination with the FQI algorithm to achieve better cost per-
formance compared to the naive FQI approach [23]. Costanzo et al.
use model-assisted FQI and policy shaping to attain similar cost
improvements [7]. Other work proves even feature engineering [4]
can help extract critical information from the environment’s state.

6 CONCLUSIONS

In this work FQI learners were implemented to optimize the cost
of the energy consumption of a household with three devices in a
day-ahead market price setting. Two approaches were illustrated
for this application: a centralized single agent controlling all devices
versus a multi-agent RL based-approach with independent learners
that each control one device. In both settings, the agents are able
to cope with the mix of interruptible and uninterruptible loads
and optimize multiple devices concurrently. Due to the aligned
common goals of all agents, fully independent learners are able

to learn more cost-effective policies than a centralized agent and
achieve better performance. On average, the independent learners
attain an electricity cost that is 9.65% lower than the cost attained
with the centralized learner.

In an attempt to avoid straining the electricity grid, a soft con-
straint was added to limit the amount of energy that is allowed to
be consumed during one time step. Once this limit is exceeded, the
agent(s) receives a penalty proportional to the violation. Although
both centralized and independent learners show promising prelimi-
nary results, future work will look into more advanced techniques
to coordinate multiple agents in this MORL setting. Previous work
mentioned in this paper has shown promising results when com-
bining FQI with other multi-objective techniques. Coordination
schemes such as coordinated Q-learning, the inclusion of auxiliary
tasks and the availability of additional information, such as the
price profile, to the agent(s) are valuable paths to be considered in
solving this research problem.
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