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ABSTRACT

We consider the route choice problem using multiagent reinforce-

ment learning. In this problem, agents individually learn which

routes minimise their expected travel costs. Such a selfish behaviour

results in the so-called User Equilibrium (UE), which is inefficient

from the system’s perspective. In order to reduce the impact of self-

ishness, we develop a toll-based Q-learning algorithm. In particular,

we employ the idea of marginal-cost tolling (MCT), where each

driver is charged according to the cost it imposes on others. The

use of MCT leads agents to behave in a socially-desirable way so

that the system optimum (SO) is attainable. In contrast to previous

works, however, our tolling scheme is distributed (i.e., each agent

can compute its own toll), is charged a posteriori (i.e., at the end

of each trip), and is fairer (i.e., agents pay exactly their marginal

costs). Additionally, we provide a general formulation of the toll

values for univariate, homogeneous polynomial cost functions. Fur-

thermore, we deliver theoretical results showing that our approach

converges to a system-efficient equilibrium (i.e., an UE aligned to

the SO) in the limit.
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1 INTRODUCTION

Traffic issues are faced everyday in modern society. We consider the

route choice problem, which models how commuting driver-agents

choose their routes to travel from their origins to their destinations.

In such scenarios, agents are self-interested and try to minimise

some kind of cost (e.g., travel time) associated with their trips. As a

result, the expected outcome corresponds to an equilibrium point

where no driver benefits from unilaterally changing its route. This

is the so-called User Equilibrium (UE) [43], which is equivalent to

the Nash equilibrium [25].

Although appealing from the drivers’ perspective, the UE does

not represent the system at its best operation (i.e., when average

travel time is minimum). In fact, the average travel time under UE

can be considerably higher than the so-called system optimum (SO).

However, the SO is only attainable if some agents take sub-optimal

routes to improve the system’s performance, which is not realistic

given that agents are self-interested. Accordingly, the deterioration

in the system’s performance due to drivers’ selfishness is known

as the Price of Anarchy (PoA) [29].

In this sense, different approaches have been proposed to align

the UE towards the SO, including: charging tolls [6, 11, 35], com-

puting difference rewards [45, 46], enforcing altruism [9, 14], etc.

Among these fronts, charging tolls stand out for their relatively

simplicity and for their less restrictive assumptions. One of the

most important such scheme was introduced by Pigou [30] and

is known as marginal-cost tolling (MCT), in which each agent is

charged proportionally to the cost (e.g., travel time) it imposes on

others. By employing MCT, the UE is biased towards the SO in such

a way that they both coincide.

In this paper, we approach the toll-based route choice problem

from the reinforcement learning (RL) perspective and provide theo-

retical guarantees on the agents’ convergence to a system-efficient

equilibrium (i.e., aligning the UE to the SO). Learning is a fundamen-

tal aspect of route choice because drivers must learn independently

how to adapt to the changing traffic conditions. In our approach,

each driver is represented by a Q-learning agent whose objective

is to learn which route minimises its expected cost. Additionally,

we design tolls using the MCT scheme, where the cost of a link

comprises two terms: the travel time and the toll charged on it.

We then propose a generalised toll formulation that charges an

agent a posteriori (i.e., only after it has completed its trip) and that

can be computed by the agents themselves. In this sense, as com-

pared to existing approaches, our formulation is more general (i.e.,

it applies to most traffic scenarios), it is fairer (i.e., agents pay ex-

actly their marginal costs), and it is easier to deploy (i.e., it has

fewer infrastructure requirements). To the best of our knowledge,

this is the first time that RL agents are proven to converge to a

system-efficient equilibrium without having full knowledge about

the reward functions. In particular, the main contributions of this

work can be enumerated as follows:

• We generalise the toll values formulation for univariate,

homogeneous polynomial cost functions. We show that the

proposed formulation comprises the most commonly-used

cost functions in the literature, and that it can be computed

locally by the agents themselves (i.e., without knowing over-

all traffic situation).

• We devise a toll-based Q-learning algorithm through which

each agent can compute the toll it has to pay a posteriori

(i.e., whenever it finishes a trip) and can use such informa-

tion to learn the best route to take. We then show that the

proposed a posteriori tolling scheme is fairer and simpler

than a priori schemes.



• We provide theoretical results showing that our method

converges to the UE in the limit (as opposed to existing

works, which assume that the UE is given) and that, by using

MCT, the UE corresponds to the SO. Thus, in the limit, the

PoA achieves its best ratio. We also validate these results in

different road networks available in the literature.

2 BACKGROUND

2.1 Route Choice

An instance of the toll-based route choice problem is defined as P =
(G,D, f ,τ ). LetG = (N ,L) represent a road network, where the set

of nodes N represents intersections and the set of links L represents

roads between intersections. Each driver i ∈ D (with |D | = d) has
an OD pair, which corresponds to its origin and destination nodes.

A trip is made by means of a route
1 R = {(nu ,nv ) ∈ L | ∀p ∈

[0, |R | − 1],npv = n
p+1
u }, which is a sequence of links connecting an

OD pair. Such a demand for trips generates a flow of vehicles on

the links, where xl is the flow on link l ∈ L. The cost cl : xl → R+
associated with crossing link l ∈ L is given by

cl (xl ) = fl (xl ) + τl (xl ), (1)

where fl : xl → R+ represents its travel time and τl : xl → R+
denotes the toll charged for using it. In order to enhance presenta-

tion, hereafter we leave xl implicit and use simply cl , fl , and τl to
represent the cost, travel time, and toll on link l , respectively. The
cost of a route R is then computed as

CR =
∑
l ∈R

cl . (2)

Travel times fl are typically abstracted as volume-delay functions

(VDF, whichmap a flow of vehicles into a travel time—a.k.a. latency),

whereas toll values τl should be defined according to a specific

purpose (e.g., maximising revenue, minimising link usage). We

refer the reader to [28] for a more detailed overview.

Toll values can be defined according to different objectives. In

this work, we consider the case of biasing the UE towards the SO.

According to Pigou [30], this can be achieved by means of marginal

cost tolling (MCT). Under MCT, each agent is charged proportion-

ally to the cost it imposes on others. Specifically, the marginal cost

toll on link l is the product of its flow and the derivative of its VDF

function [5, 30], i.e.,

τl = xl · (fl (xl ))′. (3)

It should be noted, on the other hand, that charging tolls arbitrarily

(e.g., charging a constant price on selected links) does not necessar-

ily lead to the SO [5].

2.2 Reinforcement Learning

In reinforcement learning (RL), an agent learns by trial and error

how to behave within an environment [37]. The basic RL cycle

can be described as follows. Initially, an RL agent observes the

current state of the environment and chooses an action based on

its knowledge. Afterwards, the agent executes the chosen action

and receives a reward, which is then used to update its knowledge

1
We abuse notation here and use npu (npv ) to denote the start (end) node of the pth
link of route R .

base. An agent’s knowledge here refers to its policy, i.e., a mapping

from states to actions. A complete RL cycle is called an episode.

The RL problem is typically formulated as a Markov decision

process (MDP), which consists in a tuple (S,A,T, r ), where S
represents the set of environment states, A represents the set of

actions, T : S × A × S → [0, 1] defines the transition function,

and r : S × A → R denotes the reward function. In route choice,

drivers know their routes a priori (or at least a subset of them) and

just need to decide on which one to take everyday. In this sense,

an agent’s actions represent the possible routes between its origin

and destination. The reward
2
for taking action a ∈ A can then be

denoted as:

r (a) = −CR , (4)

with a = R. Whenever a driver takes a route, it will inevitably reach

its destination, thus rendering the state definition irrelevant here.

Therefore, this problem is typically modelled as a stateless MDP.

Solving a stateless MDP involves finding a policy π (e.g., which

route to take) that maximises the agent’s average reward. To learn

such a policy, the agent needs to repeatedly interact with the envi-

ronment so as to learn its dynamics. A particularly suitable algo-

rithm for this purpose is Q-learning [44], which learns the expected

return Q(a) of selecting each action a while balancing exploration

(gain of knowledge) and exploitation (use of knowledge). In partic-

ular, after taking action a and receiving reward r (a), the stateless
Q-learning algorithm updates Q(a) as:

Q(a) = (1 − α)Q(a) + αr (a), (5)

where the learning rate α ∈ (0, 1]weights howmuch of the previous

estimate should be retained. As for exploration, a typical strategy

is ϵ-greedy, in which the agent chooses a random action with prob-

ability ϵ or the best action otherwise. The Q-learning algorithm is

guaranteed to converge to an optimal policy if all state-action pairs

are experienced an infinite number of times [44].

Although Q-learning is guaranteed to converge in the single-

agent case, it has no guarantees in multiagent settings. In fact, no

general convergence guarantees exist for multiagent RL. The point

is that, when multiple agents share a common environment, their

actions may affect the reward received by others, which invalidates

the so-called Markov property, i.e., the environment is no longer

stationary [8, 39]. Notwithstanding, interesting progress has been

achieved in more specific scenarios, as discussed next.

Multiagent RL (MARL) problems may be approached under dif-

ferent perspectives. Stochastic (or Markov) games [20] represent a

straightforward approach, where agents’ decisions are represented

in a joint action space. Several algorithms have been proposed in

this context for 2-player zero-sum games [20], 2-player general-sum

games [15, 16], and coordination games [21, 41, 42]. However, route

choice usually consists in several (not only two) agents, which rarely

cooperate [34]. Gradient ascent algorithms were also proposed to

handle multiagent learning scenarios [1, 7, 50]. Nonetheless, their

convergence guarantees still only apply to 2-player games.

In this paper, we model agents as independent Q-learners [10],
where each agent has its own stateless MDP and interprets the

2
Observe that, although the reward an agent receives is formulated as a function of its

single route, it actually depends on the flow of vehicles on the links that comprise that

route. This is expressed by means of the VDF function, as explained in Section 2.1.



behaviour of other agents as the dynamics underlying its environ-

ment. In spite of its simplicity, this modelling properly represents

real traffic settings, given that drivers have a very limited knowl-

edge about what others are doing (not to mention their policies).

We advance the state-of-the-art by proposing a modified version

of Q-learning (where agents also need to compute—and pay—a toll

for the routes they take) that is guaranteed to converge both to the

UE and to the SO.

3 RELATEDWORK

In this sectionwe discuss representative literature on system-efficient

equilibria in route choice (and related problems). The reader is re-

ferred to [28, 40] for a more detailed overview.

The use of tolls to enforce system-efficient behaviour has been

widely explored in the literature. There is a plethora of works in this

line, considering drivers with heterogeneous utility [11], toll infor-

mation mechanisms [17], tolls with bounded values [6], RL-based

tolls [38], and so on. We concentrate, however, in the marginal-cost

tolling (MCT) scheme [30]. The concept of MCT has been investi-

gated in several works, such as [24, 35, 47, 48]. As opposed to our

approach, nonetheless, these works neither investigate how drivers

react to tolls nor how to ensure convergence to the user equilibrium

(UE)—which, by using MCT, shall be equivalent to the system opti-

mum (SO). Furthermore, these tolling schemes charge tolls a priori,
i.e., before the agents start their trips. Ideally, however, tolls should

only be charged after their real marginal costs are available (i.e., at

the end of the trips). A priori tolling is indeed appealing from the

agents’ perspective, since such agents can see in advance the toll

associated with each of their possible actions. Nonetheless, these

schemes usually define the prices based on historical congestion

levels, meaning that the agents may end up paying a toll that is

higher than their marginal costs. In particular, since MCT is based

on the impact an agent causes on others, one cannot assess such

impact before it happens (except if one can predict drivers decisions

along their trips). Hence, we say that these schemes are unfair (see

discussion in Section 5.2).

In this work, by contrast, we assume that tolls are charged a pos-
teriori and per route. We then present a general toll formulation that

can be computed directly by the agents. In this way, we can simplify

the infrastructure requirements for deploying the tolling scheme

by assuming that each vehicle has a navigation device responsible

for charging the toll whenever a trip is finished. Additionally, our

modelling makes the drivers’ decision process easier since they

can better understand the costs being charged [26]. Traditional

tolling schemes could also benefit from connected navigation de-

vices. However, such approaches would strongly depend on stable

communication (otherwise tolls would not be available a priori),

whereas our approach remains robust even under precarious com-

munication conditions (since tolls could be computed at any time

once the corresponding trip is finished).

Similarly to charging tolls, some works investigated the SO by ex-

plicitly assuming that agents behave altruistically. Chen and Kempe

[9] and Hoefer and Skopalik [14] investigated altruism in routing

games. Levy and Ben-Elia [19] developed an agent-based model

where drivers choose routes based on subjective estimates over their

costs. However, whereas tolls can be imposed on agents, altruistic

behaviour cannot be assumed or made mandatory [13]. Further-

more, these works assume that agents know each others’ payoff to

compute their utilities. Route guidance mechanisms have also been

employed to approximate the SO. These include mechanisms for:

negotiating traffic assignment at the intersection level [22], bias-

ing trip suggestions [4], allocating routes into abstract groups that

offer more informative cost functions [23, 31], etc. Notwithstand-

ing, in general, these works assume the existence of a centralised

mechanism.

Wolpert and Tumer [45, 46] introduced the idea of difference
rewards, which also relates to our approach. Basically, the differ-

ence reward an agent receives for taking an action corresponds to

the amount the system’s performance deteriorates considering his

action. Precisely, it is measured as the difference between the sys-

tem’s performance with and without it. Using difference rewards,

the agents’ reward signal is aligned with the system’s utility so

that they converge to the SO. However, difference rewards can only

be computed upon strong, full observability assumptions. Later

on, methods for approximating the difference reward signals were

proposed [2]. Nonetheless, this kind of approach still depends on

some sort of global information.

4 OUR APPROACH

This section presents our reinforcement learning method through

which agents can compute the tolls associated with their routes

and use that information to learn their best routes. We model the

problem as a stateless Markov decision process (MDP) and repre-

sent drivers by means of Q-learning agents. At every episode, each

such agent chooses a route from its origin to its destination and,

once the trip is completed, the agent observes its travel time. Build-

ing upon such observations, we propose a general tolling scheme

through which the toll values can be computed a posteriori by the

agents themselves. Together, the travel time and toll value an agent

experiences in a given route compose the cost of such route. Using

this cost, each agent then computes the regret associated with the

chosen route and uses such information to update its Q-table.

Our generalised tolling scheme assumes that each agent can

observe its travel time and compute its toll a posteriori. In practical

terms, this is equivalent to coupling each driver with a mobile navi-

gation device, which computes and provides such information [12].

We remark that, by definition, travel times and tolls are defined per

link, whereas agents’ decisions are based on routes. In this sense,

hereafter we refer to a route’s travel time (and toll value) as the

sum of its links’ travel times (and toll values).

Toll values are defined according to the marginal cost of the

agents, as defined in Equation (3). Recall that such cost is obtained

through the derivative of the link’s cost, which depends on the

volume-delay function (VDF) being employed. Sharon et al. [35]

have shown that, for the BPR function [27], the marginal cost toll

can be written as τl = β(fl − Fl ), where fl and Fl represent the
actual (i.e., as given by the VDF function) and free flow (i.e., the

lower bound when xl = 0) travel times on link l , and β represents

a VDF-specific constant. Nonetheless, given that different VDFs

are available in the literature, we go beyond and generalise the toll

formulation according to the following proposition.



Proposition 4.1. The marginal-cost toll value τl on any link l
with a univariate, homogeneous polynomial VDF function is β(p1xβl ),
where β and p1 represent VDF-specific constants.

Proof. First we analyse the case of linear and polynomial func-

tions. Then, we define the general MCT formulation.

Linear functions are in the form fl (xl ) = p1xl + p0. We consider

two such examples from the literature. The OW function [28] is

represented as fl (xl ) = Fl + 0.02xl = p1xl + p0, with p0 = Fl and
p1 = 0.02 representing VDF-specific constants. The linear Braess

functions [36] can be represented as fl (xl ) =
(
kcil
d

)
xl = p1xl +p0,

with p0 = 0 and p1 =
kcil
d representing VDF-specific constants.

Polynomial functions can be defined as fl (xl ) =
∑n
β=0 pβx

β
.

In this paper we consider the specific case of univariate (single

variable), homogeneous (all termswith the same degree) polynomial

functions, which can be written in the simpler form fl (xl ) = p1x
β
l +

p0. Such a subclass of polynomial functions includes VDFs that

are well-known in the transportation literature, such as the one

by the Bureau of Public Roads [27]. The so-called BPR function is

represented as fl (xl ) = Fl

(
1 + α xl

Cl
β
)
= Fl +x

β
l

(
αFl
Cβ
l

)
= p1x

β
l +p0,

with p0 = Fl and p1 =
αFl
Cβ
l

representing VDF-specific constants.

Note that this polynomial definition generalises over linear and

constant functions. Specifically, linear functions correspond to the

special case where β = 1 and constant functions correspond to the

special case where p1 = 0.

The MCT of link l is defined as τl = xl · (fl (xl ))′. By using the

definition of univariate, homogeneous polynomial functions above,

we have that τl = xl (p1x
β
l + p0)

′ = xl (p1βx
β−1
l ) = β(p1xβl ), as

required. □

We emphasise that Proposition 4.1 only holds when the VDF is

defined as an univariate (i.e., with a single parameter, such as flow),

homogeneous (i.e., all terms with the same degree) polynomial. It

should be noted, however, that this assumption is not unrealistic,

given that the most commonly-used VDF functions in the literature

are in this class. Moreover, the above proposition can be extended to

overcome these limitations. Such an extension is left as future work.

From Proposition 4.1, observe that computing toll values requires

some parameters, such as the flow of vehicles. Recall that this

information may not be directly available to the agents. Fortunately,

however, such information can be obtained by means of the agents’

travel times. In this regard, we can combine Proposition 4.1 with

the formulation of Sharon et al. [35], thus obtaining the following

corollary.

Corollary 4.2. The toll value on link l can be rewritten as τl =
β(p1xβl ) = β(p1xβl + p0 − p0) = β(fl − Fl ), considering Fl = p0 and
fl (xl ) = p1x

β
l + p0. In other words, whenever an agent finishes its

trip (i.e. a posteriori), it can compute the toll on the corresponding
route based on its actual and free flow travel times.

As seen, agents can compute the tolls associated with their routes

knowing neither the reward of all routes nor the actions taken by

the other agents. Having defined the toll values, we can rewrite

Algorithm 1: Toll-based Q-learning (for agent i)

input :Ai , λ, µ, T , β , and Fl (for every link l ∈ L)
1 initialise Q-table: Q(ai ) ← 0 ∀ai ∈ Ai ;
2 for t ∈ T do

3 α ← λt ; ϵ ← µt ;

4 ati ← choose (and take) action using ϵ-greedy;

5 fati
← observe travel time on ati ;

6 r (ati ) ← −(fati + β(fati − Fati ));
7 Q(ati ) ← (1 − α)Q(a

t
i ) + αr (a

t
i );

8 end

the routes reward function as in Equation (6), which follows from

Proposition 4.1 and Equations (2) and (4).

r (ati ) = −∑l ∈ati cl
= −∑l ∈ati fl + β(fl − Fl )
= −(fati + β(fati − Fati )).

(6)

We can now present our RL algorithm. Again, the problem is

represented as a statelessMDP and each driver i ∈ D as a Q-learning

agent. The set of routes of agent i is denoted by Ai = {a1, . . . ,aK }.
The reward r (ati ) that agent i receives for taking route a

t
i at episode

t is given by Equation (6). The drivers’ objective is to maximise

their cumulative reward. An overview of our method is presented

in Algorithm 1.

The learning process is described as follows. At every episode

t ∈ [1,T ], each agent i ∈ D chooses an action ati ∈ Ai using an

ϵ-greedy exploration strategy. The exploration rate ϵ at episode

t is given by ϵ(t) = µt . After taking the chosen action, the agent

observe its travel time fati
and computes its reward r (ati ) following

Equation (6). Note that, by computing the toll only after the agent

observes its travel time, we ensure that our mechanism charges

tolls a posteriori. Finally, the agent updatesQ(ati ) as in Equation (5).

The learning rate α at episode t is given by α(t) = λt .

5 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of our approach.

The aim is to show that our approach converges to a system-efficient

equilibrium (i.e., an user equilibrium—UE—corresponding to the sys-

tem optimum—SO), as formulated in Theorem 5.1, adapted from [5].

Theorem 5.1 (Beckmann et al. [5]). Consider a toll-based in-
stance P ′ = (G,D, f ,τ ) of the route choice problem, where driver
i ∈ D experiences a cost cl = fl + τl after traversing link l , with fl
and τl representing the travel time and toll charged at that link, respec-
tively. Under these settings, the average travel time under user equi-
librium for P ′ equals that of the system optimum for P = (G,D, f ).

Intuitively, Theorem 5.1 says that given an instance P of the route

choice problem, if we apply marginal-cost tolling (MCT) to it—thus

obtaining an instance P ′ of the toll-based route choice problem—

then the UE in P ′ will be equivalent to the SO in P . In other words,

the UE with MCT achieves the same average travel time of the SO of

the original problem. We refer the reader to Beckmann et al. [5] for

the complete proof. An illustrative example on how this theorem

applies to Pigou [30]’s network is presented in Example 5.2.



o d

fA(xA) = 10

fB (xB ) = xB

Figure 1: Example network adapted from Pigou [30].

Example 5.2. Consider the network in Figure 1, adapted from

Pigou [30], which is traversed by 10 agents. To traverse the network,

each agent must take one out of two possible routes, A or B, whose
travel times are given by fA(xA) = 10.0 and fB (xB ) = xB , respec-
tively. By definition, the UE in this network is achieved when all

vehicles choose route B, which results in an average travel time of

10.0. The SO, on the other hand, corresponds to the case where each

route receives half of the flow, which results in an average travel

time of 7.5. Here, the price of anarchy (PoA) is 4/3. Now consider

the same example, but adopting the MCT scheme. The cost on each

link now corresponds to the sum of its travel time (as before) and

the toll charged on it, i.e., cl = fl + τl . Specifically, for routes A and

B we have that cA = 10.0 + 0.0 = 10.0 and cB = xB + xB = 2xB , re-
spectively. In this case, the UE is achieved when each route receives

half of the drivers, which corresponds to an average cost of 10.0

and an average travel time of 7.5. This is precisely the SO. Hence,

under MCT, we have that SO=UE and that PoA is 1.

Note that Theorem 5.1 is about the equivalence of SO and UE

underMCT. However, it does not consider how the UE can be achieved.
In other words, Theorem 5.1 simply assumes that the UE is given.

Indeed, this is a common assumption of other works in the literature,

such as in [35]. However, since route choice is a multiagent problem,

guaranteeing convergence to the UE is not trivial (as discussed

in Section 2.2). Hence, in order for Theorem 5.1 to apply to our

approach, we need first to show that our approach indeed achieves

the UE. In contrast to other works in the literature, we show that

our method converges to the UE, and then we show that such UE

is aligned to the SO. This is shown in Theorem 5.3. The complete

proof is presented in the next subsection.

Theorem 5.3. Consider an instance P of the route choice problem.
If all drivers use the Q-learning algorithmwith learning rateα(t) = λt

and exploration rate ϵ(t) = µt , then the system converges to the user
equilibrium in the limit.

From Theorem 5.3, we can conclude that our algorithm can find

the UE both in the original problem (P ) as well as in the correspond-

ing toll-based version (P ′). This means that, by employing MCT,

our algorithm achieves a system-efficient equilibrium (Theorem

5.1). In other words, our approach reduces the PoA to its best ratio

of 1. Therefore, based on Theorems 5.1 and 5.3 we can formulate

the following corollary.

Corollary 5.4. Consider an instance P of the route choice problem,
where all drivers use the Q-learning algorithm with learning rate
α(t) = λt and exploration rate ϵ(t) = µt . By employing marginal-
cost tolling, the agents converge to a system-efficient equilibrium in
the limit, i.e., the user equilibrium is aligned to the system optimum.
Thus, the price of anarchy converges to 1 in the limit.

5.1 Convergence to the UE

In this section, we prove Theorem 5.3 by showing that our approach

converges to the UE. Hereafter, by our approach we mean the set-

tings presented in Section 4, i.e., a stateless MDP with Q-learning

agents using ϵ-greedy exploration, where α(t) = λt and ϵ(t) = µt .
For simplicity and without loss of generality, we assume that the

actions’ rewards are in the interval [0, 1].
The intuition underlying the proof of Theorem 5.3 is that, given

that learning (α ) and exploration (ϵ) rates are decreasing with time

(using decays λ and µ, respectively), then the system is becoming

more stable (Theorem 5.6). We say that the environment is stabilis-

ing if randomness (due to agents exploration) is decreasing along

time. Consequently, we can show that, in the limit, the actions with

the highest Q-values are precisely the optimal ones (Lemma 5.9),

which leads the agents to exploit only optimal actions in the limit

(Lemma 5.8), thus achieving the UE (Theorem 5.3).

Initially, the next proposition defines the probability that best
3

and non-best actions are chosen by a given agent i at episode t .

Proposition 5.5. Using ϵ-greedy exploration with ϵ(t) = µt , at
episode t agent i chooses its best action +ati = argmaxati ∈Ai Q(a

t
i )with

probability4 ρ( +ati ) = 1 − µ t (K−1)
K and any other action

_
ati ∈ Ai \

+
ati

with probability ρ( _ati ) =
µ t (K−1)

K .

Proof. In a given episode t , by definition, ϵ-greedy exploits
the best action

+
ati = argmaxati ∈Ai Q(a

t
i ) with probability 1 − ϵ

or explores any action

_

ati ∈ Ai with probability ϵ . Observe that the
best action can also be selected under exploration. In this sense, the

best action is selected with probability (1−ϵ)+ ϵ
K . A non-best action

(i.e., ignoring the best action), on the other hand, is selected with

probability ϵ − ϵ
K . Now, considering that the value of ϵ at episode t

is given by µt , we can rewrite the probability of agent i selecting

the best action at that given episode as ρ( +ati ) = (1 − µt ) + µ t
K =

1+
µ t−Kµ t

K = 1− µ t (K−1)
K . Similarly, we can rewrite the probability

of agent i selecting any non-best action at a given episode t as

ρ( _ati ) = µt − µ t
K =

Kµ t−µ t
K =

µ t (K−1)
K . □

From Proposition 5.5, observe that
+
ρ → 1 and

_

ρ → 0 as t →∞
and ϵ → 0. To this respect, as time goes to infinity, the values of α
and ϵ become so small that the probability of noisy observations

changing the Q-table (and, mainly, the best action) goes to zero.

When the system behaves in this way, we say it is stabilising. Under
such circumstances, we can apply Theorem 5.6, adapted fromRamos

et al. [33] (we refer the reader to their work for a complete proof).

Theorem 5.6 (Ramos et al. [33]). The environment is stabilising
as t →∞. In this scenario, the probability that the Q-values of best
actions (of any agent) become non-best after∇ agents decide to explore
a non-best action is bounded by O( _ρ∇( +ρ + _

ρ)), which goes to zero as
t →∞.

Observe that an agent can, eventually, change its best action

given that it is learning. However, the agent should be able to

3
Hereafter, we refer to the action with highest Q-value as the best action and to the

other actions as non-best. Observe that the best action is not necessarily optimal.

4
In order to improve presentation, whenever it is clear from the context, we refer to

ρ(+ati ) and ρ(
_

ati ) as
+ρti and

_

ρti , respectively. Whenever possible, we also omit t and i .



prevent its Q-values from reflecting unrealistic observations. Of

course, stability does not imply that the Q-value estimates are

correct and that the agents are under UE. These are shown to be

true, however, in Lemma 5.9 and Theorem 5.3, respectively.

We can now advance to themain part of the proofs and show that,

in the limit, the action with highest estimated Q-value is indeed the

optimal action. To this regard, we firstly characterise the agent’s

behaviour in terms of the UE, as shown in the next lemma.

Lemma 5.7. Under user equilibrium, every agent i ∈ D using
ϵ-greedy exploration exploits its best route +ai = argmaxai ∈Ai Q(ai ).

Proof. By definition, under UE, for each pair of routes a′ and
a′′ of the same OD pair, with xa′ > 0, we have that r (a′) ≥ r (a′′).
For the sake of contradiction, assume that the system is under UE

and that there exists a pair of routes a′ and a′′ belonging to the

same OD pair for which xa′ > 0 but r (a′) < r (a′′). Recall that we
model the problem as a stateless MDP and agents as Q-learners

with ϵ-greedy exploration. Consequently, Q-values can be seen

as estimates of the reward values of their corresponding actions.

Therefore, given that the reward on a′ is lower than on a′′, then
all the xa′ vehicles using a

′
would deviate to a′′ (i.e., they would

exploit a′′, not a′) as soon as their Q-values are correct (which is

the case in the limit, as shown next in Lemma 5.9). This contradicts

the initial assumption, which completes the proof. □

Observe that, in the UE definition, the notion of best refers to
the value associated with each action (route). In RL-settings, these

values correspond to actions’ Q-values. Therefore, now we need to

show that agents actually choose actions with highest estimated

Q-values and that such actions are indeed the optimal ones. These
are shown in Lemmas 5.8 and 5.9, respectively.

Lemma 5.8. In the limit, agents exploit their knowledge most of
the time, i.e., they tend to choose the actions with highest estimated
Q-values.

Proof. It follows from Proposition 5.5 and Theorem 5.6, since

+
ρti → 1 and

_

ρti → 0 as t →∞ and ϵ → 0. □

Lemma 5.9. In the limit, the action with highest estimated Q-
value +ai = argmaxai ∈Ai Q(ai ) is indeed the optimal action ∗

ai =

argmaxai ∈Ai r (ai ), i.e.,
+
ai =

∗
ai as t →∞.

Proof. This lemma can be proved by contradiction. Assume

that agent i has an action
+
ai = argmaxai ∈Ai Q(ai ) with highest

estimated Q-value but that this action is not optimal, i.e.,
+
ai ,

∗
ai = argmaxai ∈Ai r (ai ). In order for that be possible, we need that

r ( +ai ) < r ( ∗ai ) and Q( +ai ) > Q( ∗ai ) hold at the same time. Although

counter-intuitive, this behaviour often occurs in the initial episodes,

given that the agents’ learning process leads travel times to oscillate.

In this case, some Q-values may not correspond to themost accurate

reward estimate of an action. However, due to exploration, agent

i will eventually take route
∗
ai . Moreover, in the limit, all actions

will be infinitely explored. Thus, as t →∞, we have thatQ( ∗ai ) will
increase until it eventually becomes the highest one, i.e., Q( ∗ai ) ≈
r ( ∗ai ) > Q( +ai ) ≈ r ( +ai ), which contradicts the initial assumption. □

We highlight that one of the key requirements of Q-learning

is that each action should be infinitely explored. However, such

exploration should not lead optimal actions to seem sub-optimal. This
is shown in the next lemma.

Lemma 5.10. In the limit, agents using ϵ-greedy exploration with
ϵ(t) = µt can still explore non-best actions without invalidating the
user equilibrium, i.e., exploration does not destabilise the equilibrium.

Proof (sketch). Suppose the system has converged to the UE in

the limit (after a sufficiently large number of episodes). At this point,

all agents are using their best actions, i.e., the ones with highest

estimated Q-values (Lemmas 5.7 and 5.8). Observe that agents can

still explore other actions, though less frequently (Proposition 5.5

and Lemma 5.8). Thus, in order to prove this lemma, one needs to

show that, under UE, explorationwill not generate an abrupt change
in the Q-values. An abrupt change occurs in an agent’s Q-table only

if it receives a reward that leads the Q-value of a non-best action to

become better than that of the best one. However, from Theorem 5.6,

we have that such abrupt changes will not affect the UE and that

even if they do, a little amount of additional exploration is enough

to lead the Q-values back to their true values (Lemma 5.9). □

We now have the required tools for proving Theorem 5.3. Recall

that our final objective is to show that our approach converges to a

system-efficient equilibria (i.e., the SO) as soon as MCT is employed.

From Theorem 5.1, this is only attainable if our approach is guar-

anteed to converge to the UE. Therefore, proving Theorem 5.3 is

sufficient to show that, by employing MCT, our approach converges

to the SO.

Proof of Theorem 5.3. According to Theorem 5.6, the sys-

tem becomes stable in the limit and abrupt changes do not affect

the Q-values (i.e., non-best actions cannot become the best ones).

Moreover, from Lemma 5.8, we know that in the limit all agents

keep exploiting most of the time. Remember that exploiting means

choosing the action with the highest estimated Q-value, which in

the limit corresponds to the optimal one, according to Lemma 5.9.

Finally, from Lemma 5.10 we have that exploration does not affect

the UE. Thus, our algorithm can be said to converge to the UE. □

5.2 Fairness

In this section, we analyse the fairness of our approach. We begin

with a more precise definition of fairness, which is given as follows.

Definition 5.11 (MCT fairness). A marginal-cost tolling scheme is

fair if the agents are charged exactly their marginal costs (i.e., the

cost they impose on others).

Observe that tolls can be seen as a mean to penalise undesired

(i.e., selfish) behaviour. In this sense, from Definition 5.11, we can

conclude that if toll values do not correspond to marginal costs,

then such tolls may end up penalising the wrong agents (i.e., those

that are not acting selfishly). In other words, unfair tolling should

be avoided.

In contrast to other works in the literature, our approach charges

tolls a posteriori. The next theorem shows that charging agents a

posteriori translates into a fairer tolling scheme, since agents only

pay for the cost they are actually imposing on others. A more con-

crete example comparing a priori and a posteriori tolling schemes

in terms of fairness is presented forward, in Example 5.13.



Theorem 5.12. Consider a toll-based instance P = (G,D, f ,τ ) of
the route choice problem. Then, charging tolls in P a posteriori is fairer
than charging a priori.

Proof. Building upon Definition 5.11, to show that a posteriori

toll charging is fairer than a priori toll charging, we need to show

that the former charges exactly the marginal cost, whereas the latter

may not. For simplicity, we perform this analysis from the links

perspective (although it easily extends to routes). In general terms,

the toll charged on link l is given by τl = β(p1xβl ) (as formulated in

Proposition 4.1). Assume, without loss of generality, thatp1 = β = 1.

In this case, we have that τl = xl , which corresponds to one of the

cost functions presented in Pigou [30]’s example. Abusing notation,

assume that τ tl = xtl corresponds to the toll charged on link l at
episode t based on the flow on that link at that episode. Observe

that the flow on link l can change from one episode to another. This

is especially true at the beginning of the learning process, when

the system is not yet stable. Such a difference can be expressed as

∆tl = |x
t−1
l − xtl | ≥ 0.

In the case of a priori toll charging, τ tl is computed based on

previous steps. For simplicity, assume that τ tl = xt−1l . On the one

hand, if ∆tl = 0, then the toll τ tl charged on link l is precisely xtl ,

given thatxt−1l = xtl . On the other hand, if the flow on link l changes

from one episode to another, then xt−1l , xtl and ∆tl > 0. Observe

that the marginal cost for taking link l at episode t should be xtl ,

whereas a priori toll charging considers xt−1l . Therefore, whenever

∆tl > 0, agents using l would be charged above (or below) the cost

they are actually imposing on others. Consequently, a priori toll

charging is unfair whenever ∆tl > 0. This cost can be even higher

when τ tl is not based on the flow of a single previous episodes, but
on many previous episode (e.g., an average of previous flows).

In contrast, a posteriori toll charging defines that τ tl = xtl , which
corresponds precisely to the cost agents are imposing on others.

Observe that ∆tl does not affect the toll values here. Thus, a poste-

riori toll charging (as used in our approach) can be said fairer than

a priori toll charging. □

Example 5.13. Consider again the 10-agent network presented

in Example 5.2 and Figure 1. In this extended example, we consider

a hypothetical sequence of three episodes (in which every agent

chooses a route). Such a sequence is presented in Table 1. In the

table, we present the toll values for both routes (A and B) as gen-
erated by a priori (as usual in the literature, assuming that tolls

are initialised with zero, as in Sharon et al. [35]) and a posteriori

(as in our approach) tolling schemes. In the case of a priori tolling,
assume that toll values are initialised with 0.0, as in Sharon et al.

[35]. On subsequent episodes, the toll of each route is defined as

the marginal cost of such route in the previous episode. The ra-

tionale behind such model is that agents can check the tolls that

they are going to pay on each route before they actually take any

route. However, this leads to outdated toll values. We note that, by

definition, MCT schemes should charge each agent according to its

marginal cost, which is not achieved by a priori tolling schemes.

As seen in Table 1, in the second episode, even though all agents

are using route B, the toll they are going to pay is only 6.0, which

corresponds to 60% of their actual marginal cost. Later on, in the

Table 1: Example comparing a priori and a posteriori tolling

in the road network of Figure 1, with three episodes.

flow a priori a posteriori

episode xA xB τA τB τA τB

1 4 6 0.0 0.0 0.0 6.0

2 0 10 0.0 6.0 0.0 10.0

3 5 5 0.0 10.0 0.0 5.0

third episode, half of the agents are using each route, which corre-

sponds to the SO. Nevertheless, agents using route B need to pay a

toll of 10.0. Therefore, the prices charged by a priori tolling may

be (and often are, as shown in this example) unfair. In the case of a
posteriori tolling schemes, by contrast, tolls are charged only after

a route is taken. At this point, one could argue that our approach

prevents agents from analysing the costs of their decisions a priori.

However, as tolls are incorporated into agents’ utility functions,

the effects of such a posteriori charges are naturally captured by

the learned Q-functions. As seen in Table 1, the tolls defined by

a posteriori tolling schemes always correspond to the actual flow

of vehicles (and their marginal costs). Consequently, a posteriori

tolling schemes can be said to be fairer than a priori tolling schemes.

6 EXPERIMENTAL EVALUATION

In this section, we empirically analyse the performance of our ap-

proach to validate our theoretical results. Recall that learning in

route choice means finding the best route to take, which can be

seen as a moving target given the existence of multiple agents with

possibly conflicting interests. In this context, the term convergence

refers to the point at which the agents keep exploiting their knowl-

edge most of the time and the system is stable (so that agents only

observe small fluctuations in their costs). Our aim is to show that,

by using our approach, such a stable point corresponds to a system-

efficient equilibrium, i.e., the user equilibrium (UE) is aligned to the

system optimum (SO).

6.1 Methodology

We simulate our method in several road networks available in the

literature
5
, described as follows.

• B1, . . . ,B7
: expansions of the network introduced with the

Braess paradox [36]. The Bp graph has |N | = 2p + 2 nodes,
|L| = 4p + 1 links, a single origin-destination (OD) pair, and

d = 4,200 drivers.

• BB1,BB3,BB5,BB7
: also expansions of the Braess graphs,

but with two OD pairs [36]. The BBp graph has |N | = 2p + 6
nodes, |L| = 4p + 4 links, and d = 4,200 drivers.

• OW: synthetic network [28] with |N | = 13 nodes, |L| = 48

links, 4 OD pairs, d = 1,700 drivers, and overlapping routes.

• SF: abstraction of the Sioux Falls city, USA [18], with |N | =
24 nodes, |L| = 76 links, 528 OD pairs, d = 360,600 drivers,

and highly overlapping routes.

5
The road networks are available at https://github.com/maslab-ufrgs/network-files.



The number of routes in the above networks can be overly high.

As in the literature, we limit the number of available routes to theK
shortest ones

6
, which we computed using the KSP algorithm [49].

An experiment corresponds to a complete execution, with 10,000

episodes, of our method on a single network. We evaluate the

performance of an execution by measuring how close the average

travel time obtained by it is to that of the SO; the closer the value

is to 100, the better.

We tested different value combinations for our method’s param-

eters (i.e., λ, µ, and K ). For each combination, we ran 30 repetitions

and selected the best configurations for further analyses in the

next subsection. We omit the parameters’ analysis due to the lack

of space. In order to better evaluate our method, we compared it

against other approaches available in the literature, namely dif-

ference rewards [45, 46], ∆-tolling [35], and standard (toll-free)

Q-learning [44], to which we refer hereafter as DR, ∆T, and SQ,

respectively. In all cases, we employed our own algorithm, but

replacing the reward functions as appropriate. In what follows,

any claim about whether one approach is better than the other is

supported by Student’s t-tests at the 5% significance level.

6.2 Results

The average performance of all algorithms in different networks in

terms of proximity to the system optimum (SO) is shown in Table 2.

As seen, our approach indeed approximates the SO in the tested

networks. On average, our results are within 99.957% of the SO,

with a standard deviation of 0.006%. We remark that the average

travel times achieved here correspond to the SO and that, due to the

toll values, agents have no incentive to deviate (i.e., they reached

an equilibrium). Thus, as expected, the experimental results are

consistent with the theoretical analysis, showing that our approach

converges to a system-efficient equilibrium in the limit.

As for the other algorithms, it can be seen that ∆-tolling (∆T) and
difference rewards (DR) were also able to approximate the SO. In

fact, in most cases, there are no statistically significant differences

between the results obtained by the three SO-oriented algorithms

(i.e., Ours, ∆T, and DR) tested here. We highlight, however, that

our approach achieved slightly better average results, especially on

instances with multiple origin-destination pairs. This is due to the

fact that our approach charges tolls a posteriori, meaning that our

rewards reflect the current dynamics of the system more accurately

than the other methods do. We also remark that, in spite of the

similar results, our approach has less restrictive assumptions than

the other methods. In particular, as opposed to ∆T, our approach (i)

provides a learning scheme, (ii) defines a fairer tolling scheme that

can be computed by the agents themselves, and (iii) has convergence

guarantees. Furthermore, in contrast to DR, our method does not

assume the existence of a central authority (which, in case of DR,

also requires full knowledge about the cost functions).

Finally, observe that standard Q-learning (SQ) obtained the worst

results among the tested algorithms, as expected. This is due to the

fact that, using SQ, agents do not take the system welfare into ac-

count when making their decisions. Consequently, the SO becomes

unattainable, as detailed in Example 5.2. In contrast, the SO-based

6
As for the BB networks, we enforced the route with fewest links among the shortest

ones, otherwise the SO would not be attainable, as discussed in [32].

Table 2: Average (and standard deviation) proximity to the

SO achieved by the algorithms in different networks.

Net. Ours ∆T DR SQ

B1 99.999 (10
−3
) 99.999 (10

−4
) 99.999 (10

−3
) 78.856 (5.29)

B2 99.999 (10
−4
) 99.999 (10

−4
) 100.00 (0.00) 85.413 (3.81)

B3 99.999 (10
−3
) 99.999 (10

−3
) 99.999 (10

−3
) 87.778 (2.12)

B4 99.999 (10
−3
) 99.999 (10

−3
) 99.999 (10

−3
) 90.301 (1.68)

B5 99.999 (10
−3
) 99.998 (10

−3
) 99.997 (10

−3
) 91.957 (10

−1
)

B6 99.998 (10
−3
) 99.997 (10

−3
) 99.999 (10

−3
) 93.498 (10

−1
)

B7 99.989 (10
−3
) 99.990 (10

−3
) 99.991 (10

−3
) 94.448 (10

−1
)

BB1 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 66.677 (10
−2
)

BB3 99.999 (10
−4
) 99.999 (10

−4
) 99.997 (10

−3
) 86.196 (1.85)

BB5 99.999 (10
−4
) 99.998 (10

−3
) 99.993 (10

−2
) 95.033 (1.61)

BB7 99.998 (10
−3
) 99.999 (10

−3
) 99.996 (10

−3
) 97.718 (10

−1
)

OW 99.968 (10
−2
) 99.968 (10

−2
) 99.969 (10

−2
) 99.635 (10

−2
)

SF 99.497 (10
−2
) 99.542 (10

−2
) 99.387 (10

−1
) 98.662 (10

−2
)

Avg. 99.957 (10
−3
) 99.961 (10

−3
) 99.948 (10

−2
) 89.706 (1.40)

approaches change the agents’ reward in order to penalise selfish

behaviour, thus enforcing agents to make more altruistic decisions.

7 CONCLUDING REMARKS

In this paper, we investigated how to achieve system-efficient equi-

libria in route choice by employing marginal-cost tolling (MCT) and

reinforcement learning (RL). Learning plays a role in route choice

because drivers must learn independently how to adapt to each

others’ decisions. We defined an MCT scheme that charges agents a

posteriori (i.e., after they finish their trips), and generalises the toll

values formulation for univariate, homogeneous polynomial cost

functions (which encompasses the most used cost functions in the

literature). Our toll formulation allows the agents to compute the

toll associated with their routes using only their own knowledge.

We provided theoretical results on the agents and system per-

formance. In particular, we proved that agents converge to a user

equilibrium (UE) in the limit whose average travel time corresponds

to the system optimum (SO). Moreover, we have shown that, as

compared to other tolling schemes, ours is fairer in a sense that

agents pay exactly (rather than approximately) their marginal costs.

As future work we would like to extend our approach to the

dynamic route choice problem [3], where routes are not known a

priori. This problem is more challenging because agents must learn

their routes by exploring the entire network. Another interesting

direction would be investigating how to fairly redistribute the toll

values (or part of them) among the agents. Such a mechanism could

be useful to avoid penalising altruistic agents. Finally, we also would

like to incorporate the notion of regret into the agents’ utility [33],

thus improving the convergence analysis.
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