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ABSTRACT
Designing hierarchical reinforcement learning algorithms that in-
duce a notion of safety is not only vital for safety-critical applica-
tions, but also, brings better understanding of an artificially intel-
ligent agent’s decisions. While learning end-to-end options auto-
matically has been fully realized recently, we propose a solution
to learning safe options. We introduce the idea of controllability of
states based on the temporal difference errors [11] in the option-
critic framework. We then derive the policy-gradient theorem with
controllability and propose a novel framework called safe option-
critic. We demonstrate the effectiveness of our approach in the four-
rooms grid-world, cartpole, and three games in the Arcade Learning
Environment (ALE): MsPacman, Amidar and Q*Bert. Learning of
end-to-end options with the proposed notion of safety achieves
reduction in the variance of return and boosts the performance
in environments with intrinsic variability in the reward structure.
More importantly, the proposed algorithm outperforms the vanilla
options in all the environments and primitive actions in two out of
three ALE games.
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1 INTRODUCTION
Safety in Artificial Intelligence (AI) can be viewed from many per-
spectives. Traditionally, introducing some form of risk-awareness in
AI systems has been a prime way of defining safety in the machines.
More recently, researchers have broadened the horizon of safety
in AI to address different sources of errors and faulty behaviors
[3]. The 23 Asilomar AI principles [9] comprise of varied aspects
of safety like risk-averseness, transparency, robustness, fairness
and also legal and ethical values an agent should hold. In this work,
we refer to the following definition of safety: prevent undesirable
behavior, in particular, reducing the visits to the undesirable states
during the learning process in reinforcement learning (RL).

RL agents primarily learn by optimizing their discounted cumu-
lative rewards [34]. While rewards are a good indicator of how to
behave, they do not necessarily always lead to the most desired
behavior. Optimal reward design [31] still poses a challenge for
the algorithm designers with several issues such as misspecified
rewards [2, 13] and corrupted reward channels [7] to name a few.
Alternatively, learning with constraints allows us to introduce more
clarity in the objective function [1].

.

During exploration, agents are naturally unaware of the states
which may be prone to errors or may lead to catastrophic con-
sequences. Risk-awareness has been introduced in the agents by
directing exploration safely [20], optimizing the worst-case perfor-
mance [39], measuring the probabilities of visiting erroneous states
[12] and several other approaches. Garcıa and Fernández (2015)
presents a comprehensive survey covering a broad range of tech-
niques to realize safety in RL. In a Markov Decision Process (MDP),
majority of the methods seek to minimize the variance of return as
a risk mitigation strategy. Many authors [11, 25, 29, 30, 37, 38] have
used temporal difference (TD) learning for estimating the variance
of return to capture the notion of uncertainty in the value of a state.

While some of the aforementioned approaches leverage TD learn-
ing in estimating errors and risks, all of them define notions of safety
in the primitive action space. Temporally abstract actions provide
an approach to represent the information in a hierarchical format.
The concept of learning and planning in a hierarchical fashion is
very close to how humans think and approach a problem. Tempo-
ral abstractions have been vital to the AI community since 1970s
[5, 8, 15, 18, 23, 24]. Prior research has shown that the temporal
abstractions improve exploration, reduce complexity of choosing
the actions and enhance robustness to the misspecified models. The
options framework [28, 36] provided an intuitive way to plan, rea-
son, and act in a continual fashion as opposed to learning with the
primitive actions. Many authors [6, 16, 17, 19, 22, 32, 41] provide
methods for discovering subgoals and then the learning policies to
achieve those subgoals.

The option-critic framework [4] enables end-to-end learning of
the options. However, defining a safe option which does not lead
to the erroneous states during the learning process still remains
an open question. We introduce the idea of controllability [11] in
the options framework as an additional condition in the optimality
criterion which constrains the variance of the TD error as a measure
of uncertainty about the value of a state-option pair. In this work,
we propose a new framework called safe option-critic for learning
the safety in options.

KeyContributions: This work incorporates the notion of safety
in the option-critic framework and presents a mechanism to au-
tomatically learn safe options. We derive the policy-gradient the-
orem for the safe option-critic framework using constraint based
optimization. We then demonstrate through experiments in the
four-rooms grid environment, that learning the options with con-
trollability (term quantifying controllable behavior of an agent)
results in the safer policies which avoid states with the high vari-
ance in the TD error. Empirically, we show the benefits of learning
safe options in the ALE environments with high intrinsic variability
in the rewards. Our approach outperforms the vanilla options with



no notion of safety in 3 Atari games namely, MsPacman, Amidar
and Q*Bert. In 2 out of 3 games, learning the safe options also
outperforms the primitive actions. To this end, we propose a novel
Safe Option-Critic framework for the future research in the AI
Safety paradigm.

2 PRELIMINARIES
In RL, an agent interacts with the environment at discrete time
steps t ∈ {1, 2, ...} where it observes a state st ∈ S . The agent then
chooses an action at ∈ A from a policy which defines a probability
distribution of actions over the state space π : S × A → [0, 1].
After choosing an action, the agent transitions to a new state st+1
according to the transition function P : S ×A→ (S → [0, 1]) and
receives a reward rt+1 where the reward function is defined as
r : S ×A→ R. A MDP is defined by a tuple < S,A,γ , r , P > where
γ is a discount factor. A discounted state-action value function is
defined as Q(s,a) = Eπ [

∑∞
t=0 γ

t rt+1 |s0 = s,a0 = a] with γ ∈ [0, 1].
The value of Q can be learned in an incremental fashion using
one-step TD learning also written as TD(0) which is a special case
of TD(λ) [33]. The state-action value is updated using the equation:
Q(st ,at ) ← Q(st ,at ) + αδ . Here α is the step size and δ is TD(0)
error which is defined as δ = rt+1 + γQ(st+1,at+1) −Q(st ,at ).

The policy gradient theorem [35] presents a way of updating
the parameterized policy according to the gradient of expected dis-
counted return which is defined as ρ(π , s0) = E[

∑∞
t=0 γ

t rt+1 |s0,π ].
The gradient with respect to the policy parameter θ is given as:

∂ρ(π , s0)
∂θ

=
∑
s
dπ (s)

∑
a

∂π (s,a)
∂θ

Qπ (s,a) (1)

where dπ (s) = ∑∞
t=0 γ

t P(st = s |s0 ,π ) is the discounted weighting
of the states with the starting state as s0.

2.1 OPTIONS
The options framework [28, 36] facilitates a way to incorporate
the temporally abstract knowledge into RL with no change in the
existing setup. An option ω ∈ Ω is defined as a tuple (Iω ,πω , βω );
where Iω is the initiation set containing the initial states fromwhich
an optionω can start, πω is the option policy defining a distribution
over actions given a state and βω is the termination condition of
an option ω defined as the probability of terminating in a state. An
example of options could be having high level sub-goals like going
to a market, buying vegetables and making the dish wherein the
primitive actions for instance could be the muscle twitches.

In case of options being Markov, the intra-option Bellman equa-
tion [36] provides an off-policy method for updating the Q value of
a state-option pair which can be written as:

Q(st ,ω) =Q(st ,ω) + α[rt+1
+ γ (1 − βω (st ))Q(st+1,ω)
+ γ βω (st ) max

ω′∈Ω
Q(st+1,ω ′) −Q(st ,ω)]

(2)

where ω is selected from the policy over options πΩ .

2.2 LEARNING OPTIONS
The intra-option value learning [36] lays the foundation for learn-
ing the options in the option-critic architecture [4]. It is a policy-
gradient based method for learning the intra-options policies and
the termination conditions of the options. [4] considered the call
and return option execution model, where an option ω is chosen
according to the policy over options πΩ , wherein the intra-option
policy πω is followed until the termination condition βω is met.
Once the current option terminates, another option to be executed
at that state is selected in the same fashion. πω,θ denotes the pa-
rameterized intra-option policy in terms of θ and βω,ν represents
the option termination which is parameterized by ν . The value of
executing an action a at a particular state-option pair is then given
by QU : S × Ω ×A→ R where

QU (s,ω,a) = r (s,a) + γ
∑
s ′

P(s ′ |s,a)U (s ′,ω) (3)

where U represents the value of executing an option ω at a state s ′:

U (s ′,ω) = (1 − βω,v (s ′))QΩ(s ′,ω) + βω,v (s ′)VΩ(s ′) (4)

Here, QΩ represents the optimal-value function for a given option
ω given by QΩ(s,ω) =

∑
a πω,θ (a |s)QU (s,ω,a). VΩ represents the

optimal-value function overΩ given byVΩ(s) =
∑
ω πΩ(ω |s)QΩ(s,ω).

[4] derived the gradient of discounted return with respect to θ and
the initial condition (s0,ω0) as:

∂ρ(π , so ,ω0)
∂θ

=
∑
s,ω
[µ(s,ω |s0,ω0)

×
∑
a

∂πω,θ (a |s)
∂θ

QU (s,ω,a)]
(5)

where µ(s,ω |s0,ω0) is the discounted weighting of a state-option
pair with µ(s,ω |s0,ω0) =

∑∞
t=0 γ

tP(st = s,ωt = ω |so ,ω0). The
gradient of the expected discounted return with respect to the
option termination parameter ν and the initial condition (s1,ω0) is
described as:

∂ρ(π , s1,ω0)
∂v

= −
∑
s ′,ω

µ(s ′,ω |s1,ω0)
∂βω,ν (s ′)
∂ν

A(s ′,ω) (6)

where A is an advantage function AΩ(s,ω) = QΩ(s,ω) −VΩ(s).

3 SAFE OPTION-CRITIC MODEL
Taking inspiration from Gehring and Precup’s work (2013), we
define controllability as a negation of the variance in the TD error
of a state-option action pair. We use the aforementioned definition
of controllability to introduce the concept of safety in the option-
critic architecture which aids in measuring the uncertainty about
the value of a state-option pair. Higher the variance in TD error of
a state-option pair, higher would be the uncertainty in the value
of that state-option pair. In the safety critical applications, the
agent should learn to eventually avoid such pairs as they induce
variability in the return. We optimize for the expected discounted
return along with the controllability value of initial state-option
pair. Depending on the nature of the application, one can limit or
encourage the agent visiting a state-option pair based on the degree
of controllability. Introducing controllability using the TD error
facilitates the linear scalability of the method with the increase in
the number of state-option pairs.



Continuing with the notations used in [4], we are introducing
a parameter vector described by Θ = [θ ,ν ] where θ is an intra-
option policy parameter and ν is an option termination parameter.
We assume that an option can be initialized from any state s ∈ S .
Given a state-option pair, uncertainty in its value is measured by
controllability C , which is given by the negation of the variance in
its TD error δ . The expected value of the TD error would converge
to zero, hence controllability is written as:

CΘ(s,ω) = −Ea∼πω,θ (a |s)
[
δ2(s,ω,a)

]
(7)

From now onwards, we would refer δ (s,ω,a) as δ whose value is
given by:

δ = r (s,a) + γ
∑
s ′

P(s ′ |s,a)UΘ(s ′,ω) −QU ,Θ(s,ω,a) (8)

where QU ,Θ(s,ω,a) andUΘ(s,ω) are defined in (3) and (4) respec-
tively. The aim here is to maximize the expected discounted return
along with the controllability criterion of a state-option pair. We
call this objective J , where we want to:

max
Θ

J (Θ|d),

where J (Θ|d) = E(s0,ω0)∼d [QΘ(s0,ω0) +ψ CΘ(s0,ω0)]
(9)

whereψ ∈ R acts as a regularizer for the controllability and d is the
initial state-option pair distribution. The Q value of a state-option
pair is defined asQΘ(s,ω) =

∑
a πω,θ (a |s)QU ,Θ(s,ω,a). The above

objective can also be interpreted as a constrained optimization
problem with an additional constraint on the controllability func-
tion. We will now derive the gradient of the performance evaluator
J with respect to the intra-option policy parameter θ assuming
they are differentiable. First we will take the gradient of C with θ .
Following from (7):

∂CΘ(s,ω)
∂θ

= −
∑
a

∂πω,θ (a |s)
∂θ

δ2

−
∑
a

2δ
∂δ

∂θ
πω,θ (a |s)

(10)

where the gradient of TD error δ w.r.t. θ using (8):

∂δ

∂θ
= γ

∑
s ′

P(s ′ |s,a) ∂UΘ(s ′,ω)
∂θ

−
∂QU ,Θ(s,ω,a)

∂θ
(11)

Next, the gradient of QΘ(s,ω) w.r.t. θ is:

∂QΘ(s,ω)
∂θ

=
∑
a

∂πω,θ (a |s)
∂θ

QU ,Θ(s,ω,a)

+
∑
a

∂QU ,Θ(s,ω,a)
∂θ

πω,θ (a |s)
(12)

The gradient of J (Θ|d) w.r.t. θ following from (9), (10), (11) and (12)
is reduced to:

∂J

∂θ
= (1 + 2δψ )

∑
a
πω,θ (a |s)

∂QU ,Θ(s,ω,a)
∂θ

+
∑
a

∂πω,θ (a |s)
∂θ

{QU ,Θ(s,ω,a) − ψδ2}

− 2δψγ
∑
a
πω,θ (a |s)

∑
s ′

P(s ′ |s,a) ∂UΘ(s ′,ω)
∂θ

(13)

where the gradient of QU ,Θ(s,ω,a) using (3) is:

∂QU ,Θ(s,ω,a)
∂θ

= γ
∑
s ′

P(s ′ |s,a) ∂UΘ(s ′,ω)
∂θ

(14)

and the gradient ofUΘ(s ′,ω) using (4) is:

∂UΘ(s ′,ω)
∂θ

=
∑
ω′

[
(1 − βω,ν (s ′))1ω′=ω

+ βω,ν (s ′)πΩ(ω ′ |s ′)
] ∂QΘ(s ′,ω ′)

∂θ

(15)

Substituting the above gradient value ofQ andU from (14) and (15)
in (13), the gradient of J w.r.t. θ becomes:

∂J

∂θ
=

∑
s ′,ω′

P
(1)
γ (s ′,ω ′ |s,ω)

∂Qθ (s ′,ω ′)
∂θ

+
∑
a

∂πω,θ (a |s)
∂θ

QU ,Θ(s,ω,a)

−
∑
a

∂πω0,θ (a |s0)
∂θ

ψδ2(s0,ω0,a)

(16)

where P (1)γ (s ′,ω ′ |s,ω) = γ
∑
a πω (a |s)P(s ′ |s,a)(1−βω (s ′))1ω=ω′ +

βω (s ′)πΩ(ω ′ |s ′). [4] derived the gradient of Q(s,ω) as:

∂Qθ (s,ω)
∂θ

=
∑
s ′,ω′

P
(1)
γ (s ′,ω ′ |s,ω)

∂Qθ (s ′,ω ′)
∂θ

+
∑
a

∂πω,θ (a |s)
∂θ

QU ,Θ(s,ω,a)
(17)

On expanding the gradient of QΘ(s,ω) as in (17), the gradient of J
following (16) becomes:

∂J

∂θ
=

∞∑
k=0

∑
s,ω

{
P
(k )
γ (s,ω |s0,ω0)

×
∑
a

∂πω,θ (a |s)
∂θ

QU ,Θ(s,ω,a)
}

−
∑
a

∂πω0,θ (a |s0)
∂θ

ψδ2(s0,ω0,a)

(18)

Here, (s0,ω0) corresponds to the initial state-option pair. The gradi-
ent of J here describes that each option aims to maximize its own
reward with controllability as a constraint pertaining to that option
only. Our interpretation here is that each option learnt with this
safety constraint translates to an overall risk-averse behavior.

Now we will compute the gradient of J (Θ|d) with respect to the
option termination function parameter ν . The gradient of control-
lability C with ν can be written following (7) and (8) as:

∂CΘ(s,ω)
∂ν

= −2δ
∑
a
πω,θ (a |s)

∂δ

∂ν
(19)

where ∂δ
∂v = γ

∑
s ′ P(s ′ |s,a)

∂UΘ(s ′,ω)
∂ν − ∂QU ,Θ(s,ω,a)

∂ν . The gradient
of QΘ(s,ω) w.r.t ν is written as:

∂QΘ(s,ω)
∂ν

=
∑
a

πω,θ (a |s)γ
∑
s ′

P(s ′ |s,a) ∂UΘ(s,ω)
∂ν

(20)



Using (19) and (20) the gradient of J w.r.t. ν is:
∂J

∂ν
=
∑
a
πω,θ (a |s)

∑
s ′
γ P(s ′ |s,a) ∂UΘ(s ′,ω)

∂ν

=
∂QΘ(s,ω)
∂ν

(21)

Therefore, the gradient of J w.r.t. ν becomes equal to that ofQΘ(s,ω)
which is equal to the Termination Gradient Theorem [4] in (6). The
interpretation of the derivation is in accordance with the way the
notion of safety has been conceptualized, that is, each option is
responsible for making its intra-option policy safe by incorporating
the factor of controllability. We are using one-step i.e. TD(0) while
updating the Q value of a state-option pair. Due to the assumption
that each option take care of its own safety through it’s intra-option
policy, one is only concerned about choosing an option which
maximizes the expected discounted return from next state-option
pair while terminating an option. Due to this assumption as shown
in derivation above, introducing controllability does not impact the
termination of an option. Algorithm 1 shows the implementation
details of controllability in the option-critic architecture in a tabular
setting.

Algorithm 1 Safe Option-Critic with tabular intra-option Q learn-
ing
Here α ,αθ ,αν stands for step size of critic, intra-option policy
and termination respectively.ψ is controllability regularization
parameter.
s ← s0
Select ω using softmax policy over options
Let initial ω be ω0
repeat
a ∼ πω,θ (a |s) using softmax intra-option policy
Let initial a taken at (s0,ω0) be a0
Maintain (s0,ω0,a0) at the beginning of the episode
Observe {r , s ′}
if s ′ is non-terminal state then
δ ← r + γ

[
(1 − βω,ν (s ′))QΘ(s ′,ω)

+ βω,ν (s ′)maxω′∼Ω QΘ(s ′,ω ′)
]

−QU ,Θ(s,ω,a)
else
δ ← r −QU ,Θ(s,ω,a)

end if
if (s0,ω0) == (s,ω) then
Update (s0,ω0,a0) ← (s0,ω0,a)

end if
QU ,Θ(s,ω,a) ← QU ,Θ(s,ω,a) + αδ
θ ← θ + αθ

∂ log(πω,θ (a |s))
∂θ QU ,Θ(s,ω,a)

−αθ
∂ log(πω0,θ (a0 |s0))

∂θ ψδ2(s0,ω0,a0)
ν ← ν − αν ∂βω,ν (s ′)

∂ν (QΘ(s ′,ω) −VΩ(s ′))
if βω,ν (s ′) terminates then

Choose new ω ∼ πΩ(ω |s ′)
end if
s ← s ′

until s ′ is a terminal state

Figure 1: Four Room Environment: F and G depicts the un-
safe frozen and goal states respectively. The lightest color
represents the normal states whereas the darkest color
shows the wall.

4 EXPERIMENTS
4.1 Grid World
First, we consider a simple navigation task in a two dimensional grid
environment using a variant of the four-rooms domain as described
in [36]. As seen in the Fig. 1, similar to [11], we define some slippery
frozen states in the environment which are unsafe to visit. We
accomplish this by introducing variability in their rewards. States
labeled F and G indicate the frozen and goal states respectively.

An agent can be initialized with any random start state in the
environment apart from the goal state. The action space consists of
four stochastic actions namely, up, down, left, and right. The random
actions are taken with 0.2 probability in the environment. The task
is to navigate through the rooms to a fixed goal state as depicted in
Fig. 1. The dark states in Fig. 1 depict the walls. The agent remains
in the same state with a reward of 0 if the agent hits the wall. A
reward of 0 and 50 is given to the agent while transitioning into
the normal and the goal state respectively. The rewards for the
unsafe states are drawn uniformly from [−15, 15] while the agent
transitions to a slippery state. The expected value of the reward for
the normal and the slippery states is kept same.

In the safe option-critic framework, we learn both the policy over
options and the intra-option policies with the Boltzmann distribu-
tion. We ran the experiments with varying controllability factor
ψ for learning 4 options. We optimize for the hyperparameters:
temperature and α for both Option-Critic (OC) with ψ = 0 and
safe OC. The discount factor γ is set to 0.99. The step size of the
intra-option policy is set to 0.01. The best performance is achieved
for ψ = 0 with the step size of termination and critic as 0.01 and
0.1 respectively. The optimal value of controllability was achieved
atψ = 0.05 with the step size of termination and critic at 0.1 and
0.5 respectively. The temperature for the Boltzmann distribution
is set to 0.001. The results are achieved with total of 600 episodes
averaged over 200 trials where training in each trial starts from the
scratch. In each episode, the agent is allowed to take only 500 steps,
wherein if the agent fails to reach the goal state within those steps
then the episode terminates.

To evaluate these experiments, we consider the following met-
rics: the learned policy, average cumulative discounted return of
episodes and the density of the state visits. It can be observed from



Figure 2: Learning curve with 4 options in Four Room En-
vironment: Graph depicts the averaged return over 200 tri-
als in the four room environment with 4 options. The bands
around solid lines represent the standard deviation of the
return. The experiment with controllability has lesser stan-
dard deviation in the observed return value as compared to
the one without controllability.

Fig. 2 that the options with the controllability (Safe-OC) have lower
variance in the return of an episode as compared to the options
without the controllability (OC). This highlights the fact that the
controllability helps the agent in avoiding the unsafe states (induc-
ing variability in the return value). To validate that learning with
the controllability causes fewer visits to the unsafe state, we visual-
ize the state frequency graph depicted in the Fig. 3. It is observed
that the options with the controllability have lower frequency of
visit to the unsafe states as opposed to the vanilla options.

The learning of safe options induces transparency to the be-
havior of an agent. This is most explicitly demonstrated through
the path taken by the agent in case of both controllability and no
controllability in the options as shown in Fig. 4. Regardless of the
start state, Safe-OC agent navigates to the goal state avoiding the
states with a high variance in the reward as opposed to the OC
agent which finds a shortest route being unaware of the error prone
states.

4.2 CartPole Environment
We consider linear function approximation with the options. In the
Cartpole1 environment a pole is attached to the cart which canmove
along the horizontal axis. The environment has four continuous
features: position, velocity, pole angle and angular velocity of the
pole. There are two discrete actions that can be taken, namely left
or right. In the environment, a reward of +1 is achieved as long
as the pole is maintained upright between a certain angle and a
position. The discount factor γ is set to 0.99.

The experiment is conducted with 4 options. We use an intra-
option Q-learning in the critic for learning the policy over options.
The Boltzmann distribution was used for learning both the intra-
option policies and the policy over options. The linear-sigmoid
1https://gym.openai.com/envs/CartPole-v0/

(a) OC (ψ = 0) (b) Safe-OC (ψ = 0.05)

Figure 3: State frequency in Four Room Environment: Den-
sity graph represents the number of times a state was visited
during testing over 80 trials. Darker shade represents the
higher density. a) Model without safety has equally likely
density for both the hallways. b) Model with safety shows
higher density for the path without the frozen states.

function was used for the termination of options. The hyperpa-
rameters were fine-tuned using the grid search over the parameter
space. The optimal performance was obtained with the step size
being set to 0.1 for termination, intra-option and critic. The tem-
perature for the Boltzmann distribution was set to 0.001. Sutton
and Barto’s (1998) open source tile coding implementation2 is used
for discretization of the state space. Ten dimensional features (joint
space of 4 continuous features) are used to represent the state space.
The continuous features: position, velocity and pole angle were
discretized into 3 bins and the angular velocity was discretized into
6 bins.

Fig. 5 shows the averaged return over 50 trials with the different
degrees of controllabilityψ . The best performance is achieved with
ψ = 0.25. The figure shows that with the right degree of control-
lability, the variance in the return reduces and leads to the faster
learning in terms of the mean return score. The controllability helps
in the identification of the features which lead to the consistent be-
havior of the agent, thus learning to avoid state-action pairs which
might lead the cart pole to topple. The code for the experiments
in the grid world and the cartpole environment is available on the
Github3.

4.3 Arcade Learning Environment
In this section, we discuss our experiments in the ALE domain. Re-
cent work in learning options introduced a deliberation cost [14] in
the option-critic framework [4]. The deliberation cost could be in-
terpreted as a penalty for terminating an option, thereby leading to
temporally extended options. We use the asynchronous advantage
option-critic (A2OC) [14] algorithm as our baseline for learning the
‘safe’ options with the non-linear function approximation. Within
the option-critic architecture, A2OC works in a similar fashion as
the asynchronous advantage actor-critic (A3C) algorithm [26].

Introducing controllability in the A2OC algorithm results in an
additional term to the intra-option policy gradient alone as shown in
2http://incompleteideas.net/tiles/tiles3.py-remove
3The source code is available at https://github.com/arushi12130/SafeOptionCritic

https://gym.openai.com/envs/CartPole-v0/
http://incompleteideas.net/tiles/tiles3.py-remove
https://github.com/arushi12130/SafeOptionCritic


(a) OC Policy (ψ = 0) (b) OC Policy (ψ = 0)

(c) Safe-OC Policy
(ψ = 0.05)

(d) Safe-OC Policy
(ψ = 0.05)

Figure 4: Policy in Four Room Environment: Policy learned with 4
options where S andG represents the start & goal state. {R, L, U , D }
denotes 4 actions agent takes according to the learned policy; might
take different actions due to environment stochasticity. Change in
color represents the option switching. Same color represents the
same option. The S and G states are depicted with red color. Light
blue patch represents the frozen states. a) & b) shows the policywith
ψ = 0 passing through the frozen area. c) & d) depicts policy learnt
withψ = 0.05 avoiding the frozen area due to the inbuilt safety con-
straint.

Equation (18). Our update rule for the intra-option policy gradient
in the A2OC with controllability setting thus becomes:

θπ ← θπ + αθπ
∂ log(πω,θ (a |s)

∂θ
{G −QΘ(s,ω)}

− αθπ
∂ log(πω0,θ (a0 |s0))

∂θ
ψδ2(s0,ω0,a0)

(22)

HereG is amixture ofn-step returns similar to the A2OCwith the
difference that here we consider this return only for the duration an
option persisted in continuation. Without any loss in generality, the
1-step TD error in the definition of controllability can be substituted
with n-step TD error only if the same option has continued up until
the nth step. Similarly, as discussed in the Equation (21), there is
no change in the termination gradient and we use the same update
rule as derived in the A2OC algorithm. η here is the deliberation
cost.

ν ← ν − αν
∂βω,ν (s ′)
∂ν

(QΩ(s ′,ω) −VΩ(s ′) + η) (23)

Figure 5: Learning curve for 4 options in Cart Pole Environ-
ment: Results are averaged over 50 trials. The band around
the solid horizontal lines represents the standard deviation
of the return.ψ = 0.25 performs the best in case of 4 options.

We use primarily three games; MsPacman, Amidar and Q*Bert from
the ATARI 2600 suite to test our Safe-A2OC algorithm and ana-
lyze the performances. We introduce Safe-A2OC 4 built using the
same deep network architecture as A2OC, wherein the policy over
options is ϵ-greedy, the intra-option policies are linear softmax
functions, the termination functions use sigmoid activation func-
tions along will the linear function approximation for the Q values.
For hyperparameters, we learn 4 options, with a fixed deliberation
cost of 0.02, margin cost of 0.99, step size of 0.0007, and entropy
regularization of 0.01 for varying degrees of controllability (ψ ) and
ϵ . The training used 16 parallel threads for all our experiments.
We optimized the ϵ parameter for no controllability (ψ = 0). For a
fair analysis, we compare the best performance of A2OC against
different degrees of controllability parameter with the Safe-A2OC.

Results and Evaluation: To evaluate the performances, we
use two metrics namely the learning curves [21] and the average
performance over k games. Figures 6, 7 and 8 show the learning
curves over 80M frames with varying controllability parameter.
It is observed that for specific degrees of controllability, options
learned with our notion of safety (Safe-A2OC) outperforms the
vanilla options (A2OC). It is important to note that the different
values of ψ control the degree to which an agent would be risk
averse. A grid search over the different degrees of the controllability
hyperparameterψ resulted in a narrow range of 0 to 0.15. For a very
high value ofψ > 0.3, we observe that the agents become extremely
risk-averse resulting in a poor performance. An optimum value of
ψ for all the three games is obtained around 0.05− 0.10. We present
the videos of some of these trained agents as qualitative results in
the supplementary material5. Upon visual inspection of the trained
Safe-A2OC agent, we observe that explicitly optimizing for the
variance in TD error results in the agent learning to avoid states
with higher variance in TD error. For instance, in MsPacman, the
4The source code is available at https://github.com/kkhetarpal/safe_a2oc_delib
5Supplementary material is available at https://sites.google.com/view/
safe-option-critic
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Figure 6: Learning curve for 4 options inMsPacman:Options
with a controllability factor ofψ = 0.10 learn better than the
best performing scenario of no controllability (ψ = 0, ϵ = 0.2).
Higher degrees ofψ results in poor performance.

Figure 7: Learning curve for 4 options in Amidar: Options
with a controllability factor of ψ = 0.10 outperform vanilla
options (ψ = 0, ϵ = 0.2). Higher degrees of controllability
(ψ > 0.15) results in reduced exploration and adversely ef-
fects the performance.

acquisition of the corner diamonds provide the intrinsic variability
in the reward structure. Our objective function helps the agent
understand such an intrinsic variability in reward, thus boosting
the overall performance.

The trained agents are then tested for their averaged perfor-
mance across k = 100 games as shown in the Table 1. Safe-A2OC
with a controllability value ofψ = 0.05 in Q*Bert andψ = 0.10 in

Figure 8: Learning curve for 4 options in Q*bert: Options
with a controllability factor of ψ = 0.05 see better average
performance in the learning than the one with no controlla-
bility (ψ = 0, ϵ = 0.2).

MsPacman and Amidar outperforms the score achieved by A2OC.
In MsPacman and Amidar, Safe-A2OC also outperforms the other
state-of-the-art approaches [26, 27, 40, 42] using the primitive ac-
tions. Empirical effects of introducing the right degree of control-
lability in options demonstrates that an agent which additionally
optimizes for low variance in the TD errors learns better than the
one optimizing only for the cumulative reward. The intuition here
is that using variance in the TD error as a measure of safety in
hierarchical RL helps the agents avoid states with high intrinsic
variability. Depending on the nature of the game itself, we observe
different degrees of response to different levels of controllability in
Q*bert, Amidar, and MsPacman.

5 DISCUSSION
In this work, we introduce a new framework called Safe Option-
Critic wherein we define the safety in learning end-to-end options.
We extend the idea of controllability from the primitive action space
using the temporal difference error to the option-critic architec-
ture for incorporating safety. The underlying idea of this learning
process is to discourage the agent from visiting the harmful or the
undesirable state-option pair by constraining the variance in the
TD error. Recent work by [30] proposed a direct method to calcu-
late the variance of the λ return instead of the traditional indirect
approaches which use the second order moment. The authors pro-
posed a Bellman operator which uses the square of the TD error
to measure the variance of return. This work further supports our
approach of estimating the risk through the square of TD error.

Our experiments in the tabular methods empirically demonstrate
the reduced variance in the return. Moreover, we observe a boost in
the overall performance in both the tabular and the linear approx-
imation methods. Furthermore, experiments in the ALE domain
demonstrate that an RL agent was able to learn about the intrinsic



Table 1: ALE Final Scores: Average Performance over 100 games once training is completed after 80M frames. Scores in boxes
highlight the performance with no controllability whereas aqua highlighted cells indicate the benefits of introducing our
notion of safety in learning end-to-end options. Introducing controllability in options outperforms best performances of
primitive actions in 2 out of 3 games analyzed here. Learning options with our notion of safety outperforms vanilla A2OC in
all 3 games. A3C scores have been taken from [26], DQN from [27], Double DQN from [40], and Dueling from [42].ψ represents
the degree of controllability. Values in brackets indicate standard deviation across 100 games.

Algorithm MsPacman Amidar Q*Bert
A3C 850.7 283.9 21307.5
DQN 763.5 133.4 4589.8

Double DQN 1241.3 169.1 11020.8
Dueling 2250.6 172.7 14175.8

ψ = 0, ϵ = 0.2 2285.4 (756.64) 760.71 (204.08) 16881.25 (6107.04)
ψ = 0.05, ϵ = 0.2/0.3 2481.2(909.48) 569(158.77) 17642.0 (3346.85)
ψ = 0.10, ϵ = 0.2 2710.9 (598.69) 925.43 (211.52) 14490.0(5962)
ψ = 0.15, ϵ = 0.2 2055.8(468.09) 781.31(168.79) 1477.5(961.85)
ψ = 0.25, ϵ = 0.2 2290.4(855.00) 458.82(107.77) 298.25(133.71)

variability in a large and complicated state-space such as images
with non-linear function approximation. Results from ALE also
demonstrated that the options with the notion of safety outperform
the algorithms using the primitive actions.

Limitations and Future Work: In this work, we limit the re-
turn calculation until an option terminates. Using the n-step returns
during the intermediate switching of the options at the SMDP level
is of potential interest for the future work. Additionally, it is cur-
rently assumed that all the options are available in all the states.
In the context of safety, it might be of interest to understand what
happens if the options initiation sets were limited to subset of the
entire state space. One could also work with varying the degree of
controllability regularizerψ , whereψ could start from 0 to support
the exploration in the beginning and gradually increase the value
ofψ to limit the exploration to the unsafe states.

A potential direction of future work is the extension of control-
lability to more than just the initial state-option pair. One could
extend the definition of controllability to all the state-option pairs
in the trajectory which could potentially expedite the effects of
the risk mitigation. The proposed notion of safety could also be
extended to different levels of hierarchy in the framework. For in-
stance, a mixture of options with varying degrees of controllability
can be learned, wherein at policy over the options level, one could
select an option based on how much controllability is desirable
for a subset of an environment. The intra-option policy could still
retain the current formalizations.
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