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ABSTRACT
In this paper, we introduce an alignment-based algorithm for im-

proving the performance of reinforcement learners on problems

where the reward signal cannot be collapsed into a single number.

Many real world problems require an agent to balance performance,

longevity, and safety, and do so across different timelines. The key

to intelligent behavior in such complex domains is to enable the

agents to determine “what matters when."

In this paper, we introduce the concept of local alignment that

determines whether a sub-reward supports a global reward at a

particular state and time. By selecting which policy to follow based

on alignment, we show that agents using simple sub-rewards can

combine their sub-reward-specific policies and learn a cohesive

policy for complex coordination problems that agents trained on a

single reward signal cannot learn.
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1 INTRODUCTION
Many real world problems can be formulated as a state, action,
reward structure for reinforcement learning agents to solve. In order

to do that, the original problem, with all its variabilities, intricate

parts, and quirks is traditionally summarized into a single reward

signal. For example, consider a team of soccer players. Each player

must be able to pass and control the ball, shake off defenders, shoot

the ball, etc. In such a scenario, each sub-task is critical to playing

the game well. In the typical reinforcement learning structure, the

performance of a learning agent is roughly summarized as a single

reward signal, e.g. winning or losing the soccer match. Historically,

learning algorithms applied to multiagent systems have used a

single reward signal [1, 10, 15].

Problems arise when the task at hand has different conflicting

or situationally-irrelevant sub-problems that may be relevant at a

different state and time. In soccer, knowing how to score from a

teammate’s corner-kick is a very useful skill, but is not relevant for

the majority of gameplay. An agent learning from a single reward

signal is not likely to learn techniques like corner kicks by following

the reward gradient; the win/loss reward is distributed over all their

actions, and does not focus on learning a specific sub-task well. Such

a reward signal can be very sparse and uninformative.
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These issues with sparse reward signals becomes even more

deceptive in multiagent problems, where an agent itself must be in

the right state, trying to take the right action (e.g., get a header on

their teammate’s cross) while all their teammates are taking correct

actions as well (kicking a cross properly, and clearing defenders).

With a single sparse reward signal, the likelihood of the entire

team exploring this particular state-action sequence in training is

incredibly small.

Shaping the reward by dividing the goal task into intermediate

objectives can help in learning by leveraging domain-specific infor-

mation, and ameliorating the sparsity of rewards. This approach

has been shown to improve the overall team performance in multi-

agent systems [9]. Transfer learning (TL) and multi-task learning

(MTL) approaches have also been explored in multiagent domains

to accelerate learning and generate better generalizable policies

[2, 17, 25].

However, in all of these approaches, the performance of a learn-

ing agent is still summarized by a single reward signal, and learning

in tightly coupled domains such as multiagent systems is diffi-

cult [21].

By splitting the reward signal into logical components, we can

ascribe a separate reward for each component of the overall reward.

This has a very human-like quality to it, where an agent would learn

how to shake off defenders separately from practicing shootouts.

This removes the noise in the reward signal caused by the interplay

of all the sub-components, allowing an agent to focus on a single

sub-reward. An agent learning to optimize only this sub-reward

will learn an effective strategy for a subset of the original task. By

learning policies for each sub-reward, an agent will be able to act

optimally for any situation where the agent should optimize a par-

ticular sub-reward. This way, agents will have discrete sub-policies

which are trained to solve a simpler problem than, for example,

the entire game of soccer. These agents will have a collection of

policies, each trained to optimize a single specific reward.

This formulation is similar to task decomposition [23], as we

break apart the complex task into several sub-components. How-

ever, task decomposition does not consider time-varying tradeoffs

between the sub-tasks. An agent equipped with discrete policies

trained to optimize each sub-reward can only leverage them if it
knows which policy to use at a given state and time. If the agent can
identify when it finds itself in a corner kick situation vs a penalty

shootout, it can use policies trained for these specific situations.

A similar approach for switching between policies in multiagent

adversarial scenario has shown to produce near optimal results [12].



In general, we show that the most useful sub-reward at a particular
state and time is the one most aligned with the original, coarse

reward signal.

In order to find the most effective sub-reward, we have to be able

to quickly compare each sub-rewards’s alignment with the current

state. By calculating the alignment between each reward, we can

decide when we should follow each sub-reward to best approximate

the global reward.

The key contribution of this work is to quantify the alignment
amongmultiple reward functions spanning task components needed

at different times, and use that alignment to determine what mat-
ters when to select the agents’ actions when faced with complex

tasks. The paper follows with relevant background in Section 2, the

description and definition of alignment in Section 3 and Section 4.

Experiments and results are found in Section 5 and Section 6, fol-

lowed by a discussion of the results in Section 7 and concluding

remarks in Section 8.

2 BACKGROUND
In this section we will introduce some relevant existing work that

aim to solve complex tasks which are composed of multiple sub-

objectives.

2.1 Transfer Learning
Transfer learning is the set of techniques used to improve the qual-

ity of learning and efficiency of resulting behaviors, by transferring

the knowledge gained from one problem instance or domain to

another. The idea is to learn a difficult task by starting on a simple

task and progressively increasing the task difficulty. For example, in

a multiagent coordination task, an agent can first be trained to co-

ordinate with another single agent. Once the agent has learned this

task, the learned knowledge can be transfered to a more complex

scenario where the agent has to learn to coordinate with multiple

other agents. The knowledge can be a direct transfer of informa-

tion, such as via the values in a TD-based value table [24], or the

weights in a neural network [26], or it can be transformed through

some task-aware mapping [25]. Transfer learning shown some suc-

cess in multiagent domains [2, 25]. However, assumptions such

as full observability of the world [2], and availability of inter-task

mappings for knowledge transfer [25] pose a hindrance for real

world applications. Alignment guided control is similar to transfer

learning in that both make use of different rewards with the end

goal of improving the learning process for a final objective. How-

ever, they differ in that alignment does not require any transfer

of knowledge. And unlike transfer learning, alignment switches

between sub-policies based on the current state and time.

2.2 Multi-Task Learning
Multi-task learning (MTL) is based on the idea that generalization

and performance on original task can be improved by leveraging the

domain-specific information contained in training signals of related

tasks [3]. For example in soccer, instead of specifically learning a

policy for shooting the ball towards goal, MTL aims to learn a

policy that can generalize across auxiliary tasks such as passing,

or crossing, that involve some form of kicking the ball. MTL has

been successful in machine learning applications such as natural

language processing, speech recognition, computer vision and drug

discovery [5, 8, 11, 22]. Generally in MTL, more than one loss

function is being optimized. Alignment theory is different thanMTL

because the sub-tasks do not need to be auxiliary tasks. Instead of

jointly learning policies for related tasks which benefit from shared

information, alignment switches between rewards by focusing on

what information matters now.

2.3 Multi-Objective Optimization
Multi-objective optimizations aims to find optimal solutions for

tasks that are inherently measured by multiple objectives, either

because different entities have conflicting goals, or because one

entity must balance multiple criteria. There are two broad ap-

proaches to handling such problems: (i) scalarization, where the

multiple objectives are collapsed into a single one using the trade-

offs known to the designer; or (ii) Pareto concepts, where one seeks

the points at which no objective can be increased without decreas-

ing another [7, 27, 28]. However, linearly combining all objectives

"freezes" the trade-off [4, 6, 13, 18] (that is, the exchange rate stays

the same regardless of the supply and demand). Also, Pareto-based

solutions treat each objective as an independent "entity" and do not

allow the agent to worsen one objective even if doing so would pro-

vide some larger benefit to the mission goal. Thus multi-objective

optimization fails to consider the "situational" need of a particular

time and place.

2.4 Reward Shaping
Reward shaping aims to guide the agent’s exploration to improve

time to convergence by providing domain specific knowledge to

the agent through additional rewards for intermediate objectives.

For example, in a multiagent coordination task where multiple

agents have to jointly observe POIs, a simple shaping approach

would be to provide intermediate rewards for forming agent teams.

Potential-based reward shaping ensure that good policies for a

modified reward function are also good for the original [16], and

has been shown to work in multiagent domains as well. Reinforce-

ment learning with reward shaping has shown success in hardware

validations of multiagent systems [14]; however success in tightly

coupled multiagent tasks have been limited.

Another variant of reward shaping used in multiagent domains

is the difference reward (D). The difference reward (D) for an agent

is the difference between the actual global reward (G) and what

the global reward would have been if that agent was not a part of

the team [20]. Alignment and reward shaping are related concepts

because the shaped reward function can be designed to be aligned

with the reward for the actual goal task. However, reward shaping

combines the intermediate rewards into a final single reward signal.

3 REWARD ALIGNMENT
Alignment is related to the concept of factoredness as defined by

Agogino and Tumer [1]. An agent’s reward signal (as a result of its

action) is considered factored with respect to a global reward if the

reward signal changes in the same direction as the global reward

function’s value, while holding everything else in the world fixed.

Traditionally, two reward signals are defined as being aligned if

the rewards trend up and down together for all states in the signal.
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Figure 1: The exploring rover (blue, center) sees other rovers (red, left) and points of interest. The exploring rover has been
trained to move toward other rovers and toward points of interest. However, the policies that move the rover toward a rover
or a POI are exclusive: it will not try to navigate toward both at once. In this world, two rovers are need to be within the circle
around the point of interest for the rovers to receive a reward. In the left scenario, there is no reward available to the exploring
rover; there is no global reward for moving to the other rover, and no other rover is present at the point of interest. In the
middle scenario, the agent will not receive a reward if it moves to meet the rover on the left. However, if it moves to go to the
POI, it will enter the POI region with another rover and receive a score. Thus, the reward function to go toward a POI is aligned
with the global reward. In the right scenario, themove-to-rover sub-reward is aligned with the global reward because it clearly
moves the exploring rover into a POI region with another rover. The POI following reward is not aligned because it will direct
the agent toward the POI on the right, where the agent will not receive any reward. In the middle and right scenarios, if our
agent can identity the most aligned reward of the two it was trained with, it will be able to move and receive a reward.

That is, for a given agent, a local reward function Rloc is considered
aligned with a global reward Rдlo if:

sign

(
∂Rloc (s, a)
∂a

)
= sign

(
∂Rдlo (s, a)
∂a

)
(1)

where a is the action of the agent at state s.
Given two reward signals which are not truly aligned, we can

extend the definition to say they are locally aligned if they are

aligned over the neighborhood of the state space. Figure 1 visualizes

this concept of alignment.

To achieve a mathematical value for alignment, we compare the

change in reward signal between two states when all actions are

taken. The alignment between two rewards functions Rloc and Rдlo
on a subset of states (S0) will be given by Equation 2.

AS0 (Rloc ;Rдlo ) =∑
s∈S0

∑
a

∑
a′

u
[
(Rloc (s, a) − Rloc (s, a′))(Rдlo (s, a) − Rдlo (s, a′))

]
∑
s∈S0

∑
a

∑
a′

1

(2)

In Equation 2, actions a and a′ are valid actions from state s, and
u[x] is the unit step function, equal to 1 if x > 0. This calculates

a local alignment by measuring the change in reward by taking

actions from the state s. If an agent take various actions and the

change in reward is the same, then it has found that the rewards

are aligned for these actions. If at state s, every action a ∈ A leads

to an increase in the global reward and the local reward, the two

rewards will be maximally aligned. Since the degree of alignment is

based on the number of actions, two local rewards can be objectively

compared by their alignment score if one reward function is aligned

in more (s, a) pairs.
By collecting several reward signals, an agent can find a good

policy to solve the global reward signal through a composition of

functions which are locally aligned in different subspaces in the

broader state space. We can think of alignment as a linear com-

bination of all sub-rewards into a single reward signal with the

parameters of the linear combination continually adapting depend-

ing on the state of the world.

4 CALCULATING ALIGNMENT
In domains where the action set is well defined, finite, and rea-

sonably sized, the alignment formulation in Equation 2 could be

explicitly calculated at all states. However, in most complex real

world problems this is not the case; it may not possible to explicitly

evaluate which sub-reward is more aligned right now. Equation 2

can be approximated to get around this limitation. For example, in

continuous action domains one can sample actions from the avail-

able action set; with a sufficient number of samples, the alignment

scores of two reward functions will converge to their true value,

and they can be compared appropriately.

4.1 Sampling to approximate alignment
To improve the tractability of calculating alignment for each agent,

alignment values are stored as a mapping between agent state

and alignment. Agents then compare their state during run time

to the sampled alignment values and adopt the alignment of the

most similar agent state. A k-dimensional (K-d) tree is used in
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these experiments because it supports nearest neighbor searches

on average in O(logn) time. The process for generating the tree

is described in algorithm 1. Each agent state is associated with

only one alignment, with better (strictly positive changes in the

target objective) overriding previous alignments. This one-to-one

mapping within the data structure is why the algorithm uses an

upsert operation instead of an insert .

Algorithm 1 Alignment K-d Tree Generation

1: function ADD_ALIGNMENT(tree,objA,objB)
2: initW ← RAND_WORLD()

3: initA← EVAL_OBJ(initW ,objA)
4: initB← EVAL_OBJ(initW ,objB
5: aдentStates ← GET_STATES(initW )

6: for i ∈ Num Samples do
7: newW ,dirs ← PERTURB_WORLD(initW )

8: af terA← EVAL_OBJ(newW ,objA)
9: af terB← EVAL_OBJ(newW ,objB
10: foreach (state,dir ) ∈ (aдentStates,dirs) do
11: if af terA > af terB then
12: UPSERT(tree, state, PolicyA)
13: else
14: UPSERT(tree, state, PolicyB )
15: end if
16: end for
17: end for
18: end function

5 EXPERIMENTS
There are twomajor components to testing alignment. First, policies

trained on a single sub-reward must be trained. Second, they must

be tested as components of an agent selecting the most aligned sub-

reward. These experiments take place in the simulated multi-rover

exploration domain.

5.1 Rover Romain
The rover domain contains a set of rovers (agents) and POIs in a

two-dimensional plane. Each POI has an observation radius. The

agent’s view is divided into four quadrants (north-east, north-west,

south-east, and south-west), and the agent state is determined by 2

sensors (POI, Rover) in each quadrant which return the density of

observable POIs and other rovers (respectively) in that quadrant.

The density value is the sum of values of each of the POIs or rover

divided by the euclidean distance from the sensor.

Thus at each timestep, the agent receives a feature vector of

length 8 that summarizes the world from the agent’s point of view.

The agents select their actions during the training episodes using

a feedforward neural network policy that takes the agent state as

input and outputs a movement action (a (dx ,dy ) tuple). The reward
for an episode is determined over the entire path of all of the agent’s

at the end of the episode and is then used as the fitness signal in

the evolutionary algorithm training the agent policies.

Each POI must be observed simultaneously by three agents, oth-

erwise no reward is received. This feature makes the task difficult

Figure 2: Diagram of the rover domain. The world is broken
up into four quadrants relative to the rover position and ori-
entation. POIs and fellow robots that are observed in each
quadrant are summed resulting in 8 state variables. At each
timestep, the robot’s neural network controller yields two
continuous outputs [dx ,dy ], which determine the robot’smo-
tion in the next timestep. Each POI has an observation ra-
dius such that only robots within that radius are able to ob-
serve that POI and a coupling requirement such that no re-
ward is received until that number of agents simultaneously
observe the POI in a given timestep.

to learn because of how unlikely it is that multiple agents will stum-

ble upon the proper configuration [21]. These features make the

problem an ideal one to test alignment guided exploration because

the additional objectives must add information for the method to

work since there is no main objective gradient to rely on for much

of the state space. An explanatory figure is provided in figure 2. The

reward associated with each POI is its value, randomly determined

at initialization to be between 4 and 10, divided by the average

distance of the nearest 3 agents. The total global reward is:

P(z) =
∑
p

∑
i

∑
j

∑
k

VpN
1

p,iN
2

p, jN
3

p,k
1

3
(δp,i + δp, j + δp,k )

(3)

where z is the combined joint action of all agents,Vp is the value of

observing the p-th POI, δp,i is the distance between the p-th POI

and the i-th rover, and N a
p,i indicates whether POI i was the a-th

closest rover within the maximum allowable observation distance

δ0.

N 1

p,i = 1 if δp,i < δ0 and δp,i < δp,l ∀l , i (4)

N 2

p, j = 1 if δp, j < δ0 and δp, j < δp,l ∀l , i, j (5)

N 3

p,k = 1 if δp,k < δ0 and δp,k < δp,l ∀l , i, j,k (6)
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The rovers receive no information regarding the task prior to

learning, and are trained with CCEA [19], a multiagent evolutionary

algorithm described in Algorithm 2.

Algorithm 2 Cooperative Co-Evolutionary Algorithm (CCEA)

1: foreach Generation do
2: foreach Population do
3: Generate k successor solutions

4: end for
5: for i = 1→ 2k do
6: Randomly select one agent from each population

7: Add agents to team Ti
8: Assign fitness to all agents based on simulation

9: end for
10: foreach Population do
11: Select k networks with rank probability

12: end for
13: end for

5.2 Learning Sub-Rewards
As alignment is a property between objective functions, we com-

pared a total of seven sub-rewards with the global reward function.

These rewards fell into two categories: a reward to go toward POIs

(GoToPOI) and variants of a pair of rewards to form teams (Shared

Team and Exclusive Team). The rewards are detailed below. For

each objective, we trained a policy on a simple world, with the

experimental configurations detailed in Table 1. When using these

trained policies with alignment or testing on a domain, the best

policy from each team member’s population was selected after a

series of tests in random worlds. Random worlds are initialized by

placing a cluster of agents in the center of the world, and randomly

distributing the POI in around the agents so no agent is likely to be

able to observe a POI without taking an action.

5.2.1 Single POI. A single agent placed randomly in a world

with one POI. The agent is rewarded whenever it goes within the

observation radius of the POI.

Rsinдle =
∑
a∈A

∑
p∈P

Vp

δa,p
(7)

A is the set of all agents, and P is the set of all POIs within the

observation radius of a. δa,p is the Euclidean distance between the

positions of the rover and the POI.

5.2.2 Shared Teams. Populations of agents are placed in a world

with POI who are rewarded for observing other agents. A shared

team is defined as having another agent within a short radius of

the other teammate, analogous to the observation radius for POI’s

in the rover domain. We use rewards for forming teams of 2, 3, and

4 agents. Below is the equation for a team size of 3.

Rshared =
∑
a∈A

∑
i

∑
j

N 1

a,iN
2

a, j
1

2
(δa,i + δa, j )

(8)

A is the set of all agents. N i
a,k is an indicator variable for whether

agent k is the i-th closest agent to agent a. δa,k is the distance

between agents a and k . As before, the indicator variable is only
non-zero when a, i , and j are distinct agents.

5.2.3 Exclusive Teams. Populations of agents are placed in a

world with POI who are rewarded for forming explicit teams with

others. A team is similar, but distinct from a shared team because an

agent can only be in one team. A team is calculated by iteratively

clustering the agents and seeing which tightly clustered agents

are within an observation radius of each other. Agents in these

teams are marked and removed from consideration, and the next

best cluster of agents is determined. This continues until all agents

uniquely satisfy the teaming requirements or are determined as not

a part of a team.

Leaders are selected for teams based on descending leader score.

Below is the equation for leader score (LS) of teams of size 3. The

score is the individual component of Rshared .

LSa =
∑
i

∑
j

N 1

a,iN
2

a, j
1

2
(δa,i + δa, j )

(9)

These leaders are, if not selected to be a member of another

leader’s team, the centroids of their respective teams. The reward

is then calculated similarly to Rshared , except an agent cannot be

a part of more than one team.

Rexclusive =
∑
a∈A

∑
i

∑
j

M1

a,iM
2

a, j
1

2
(δa,i + δa, j )

(10)

In this case,Mi
a,k is only one if agent k is the i-th closest agent

to agent a considering only agents not already selected to be in

teams with higher scored leaders. A is iterated through in order of

leader score.

Mi
a,k = 1 if ∀ai ∈ A | LSai < LSa ,M

i
ai ,k
= 0 (11)

5.3 Alignment Demonstration
We first show that choosing a policy associated with the most

aligned sub-reward produces logical decisions for an agent.

In the first experiment, an agent is placed inside a world which

has two areas with other agents and POI, with a no man’s land in

the middle (similar to the choice faced in Figure 1). The agent is

placed randomly around the middle, but with a bias to one side. On

their left, a plethora of agents exist, but only one POI (which has

two other agents next to it). On their right, a plethora of POI, but

only one has agents next to it.

The agent has two sub-policies available to it: one trained to go

towards POI, and the other trained to go towards other agents. The

agent should be able to select the right policy among the assorted

sub-rewards to score. This directly tests the "knowing what to

chose when" aspect of the reward alignment selection, as agents

should identify which reward function is more aligned and use the

associated policy, as there is only one right decision in each case.

(This is assuming only two rewards like GoTo POI and GoTo rover

are provided.)

5.4 Rover Team Performance with Alignment
Next, we train teams of rovers in the general rover domain prob-

lem. We tested on several world sizes and configurations to show
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Reward Coupling Observation Radius World Size Rovers POIs Timesteps

Single POI 1 4 30 1 3 25

Shared Team 1 4 40 2 0 20

Shared Team 2 4 40 3 0 30

Exclusive Team 2 2 40 6 0 20

Exclusive Team 3 3 40 9 0 25

Exclusive Team 4 4 40 12 0 30

Table 1: Training configuration for sub-reward policies. The coupling is the number of POIs (or agents) that a scoring agent
must approach within radius units to receive a reward (scaled by distance). The world size is the length and width of a square
world. All experiments were trained over 1000 generations with population of 40 neural networks per agent.

generalizable performance of alignment agents. Teams of 18 rovers

are dropped into the middle of a 25 × 25 world. 6 points of interest
are scattered around the team randomly, and each POI requires 3

rovers within the observation radius of 4 units to be marked off as

observed. Agents have 30 timesteps to move around the world and

attempt to observe the POI’s.

For the teams using alignment, sub-policies were trained on

random worlds with single sub-rewards described in Section 5.2.

We train additional teams of rovers in larger, more difficult do-

mains. These tests put teams in a 50 × 50 world, with 45 timesteps

to observe POI. One set looks at general performance in larger do-

mains, and tests with 10 agents and 30 POI in the larger world. The

next test highlights the performance-degrading effects of tightly

coupled domains, putting 30 agents in the world with 10 POI. This

highlights the effect of the tightly coupled reward because agents

have a large space to jointly pick which POI to go toward. This

creates much more room for error, as there are relatively fewer joint

choices which give a positive reward. In both cases, the 3 agents

are needed to observe a POI.

At each timestep, an agent using alignment will calculate the

most aligned sub-reward and pick an action using a policy trained

to operate on this sub-reward.

We compare alignment policy selection against a team of agents

trained using evolutionary algorithm and transfer learning. The

evolutionary algorithm trained agents using CCEA with the differ-

ence reward as the fitness function.

We also compared our results to a transfer learning method.

Policies trained on simpler instances of the problem - a relaxed cou-

pling requirement - were used to bootstrap training of the stricter

coupling requirement instances. We used a three step process. First,

policies were trained with CCEA with fitness determined by our

main objective G, but with an observational coupling requirement

of 1 (instead of 3). Then, those policies were used to seed the initial

population in another round of CCEA trained on a fitness signal

from the objective, but this time with an observational coupling

requirement of 2. Finally, these policies seeded the training of the

actual objective, observation with a coupling of 3.

As an additional baseline, we compare against random-action

policies, which randomly select an action to take every timestep.

6 RESULTS
We show comparisons using the converged performance of agents

using alignment policy selection and the other rewards. This is due

Figure 3: Converged performance for different learning poli-
cies in the tightly coupled rover domain. In this figure
the best performance on the tightly coupled rover domain
is achieved by teams using alignment policy selection to
take actions. Due to the tight coupling constraints, teams
trained difference rewards and sub-reward transfer learn-
ing do not find higher performance policies, and perform
approximately as effectively as a policies trained on a single
sub-reward.

to alignment policy selection being done in realtime; the method it-

self is not dependent on any learned criteria. Therefore, any changes

in the performance of agents using alignment policy selection is

due to the training of the underlying policies, not the alignment

policy selection, and thus a learning curve between the two would

not directly compare the performance of alignment policy selec-

tion with traditional methods. We test the general performance

of agents aligning sub-rewards in a tightly coupled rover domain

instance. The agents selecting policies based on alignment outper-

form agents trained on G, D, transfer learning with a curriculum

of different couplings, and any of the individual rewards available

to the alignment agents. This effect is seen in both the smaller, 18

agent, 25 × 25 world in Figure 3, and in the larger 30 agent, 50 × 50
world in Figure 4.

6.1 Alignment Selection Analysis
To support the claim that picking aligned rewards is what drives the

improved performance in the tightly coupled domain, we examine

the most aligned reward at every point in the world at a single time

step. As the agent’s position varies throughout the world, the most

important component of their task changes. The most important

6



Figure 4: Converged performance for the tested methods in
a 50x50 world with 10 POI, 30 agents, and 45 timesteps to ob-
serve. As the problem increases in size, the performance of
alignment policy selection agents continues to hold strong
against the baselinemethods. Additionally, as the world size
increases and the difficulty rises, the relative drop in perfor-
mance between smaller, easier worlds and larger, difficult
worlds is smaller for alignment agents. This drastically in-
creases the relative performance of alignment agents versus
the baseline, even though there is a drop in overall perfor-
mance between the smaller worlds and this one.

task is captured by the most aligned reward signal, which we see

in Figure 5.

In Figure 5, we show amap of the world with the type of the most

aligned reward at each position overlaid. We see that alignment

captures the most favorable reward signal to follow, as the GoToPOI

reward brings the agent toward the scoring region in the lower

left, and the Shared Team reward brings the agent to the scoring

region in the upper right area. The Shared Team reward signal is

ambiguous in the lower left due to the plethora of rovers in the

area. The converse is true on the right side: the GoTo POI reward

is ambiguous as it sees high rewards for moving toward any of the

POI on the left.

We can draw intuition about this as due to the interactions

between the two rewards on the periphery of the clusters. Note the

cluster of aligned Team Forming (blue star) reward points in the

lower-left corner, on the fringe of the aligned Single POI reward

signal points (green dots). Here, following the Shared Team and

GoTo POI rewards are roughly equal, as demonstrated by the few

POI points intermixed in the outcropping. However, as the agent

moves closer to the POI observation region it draws closer to the

rovers. Critically, these rovers are not in the direction of the POI -

the direction the agent shouldmove toward in this situation. Instead,

the agent moving toward the rovers will move along the border of

the radius 4 circle that defines the POI observation region. If the

other rover is just outside the POI region, an agent following the

Shared Team reward will start moving away from the POI scoring

region. Thus, it is more beneficial, and more strongly aligned, to

follow the POI reward in this area.

7 DISCUSSION
Agents trained in simple cases, such as the single agent rover do-

main problem or the artificially constructed tightly coupled domain

Figure 5: A rover domain problemwith a coupling of 3 is pre-
sented to an agent. On the left, there are more rovers than
POI, but these rovers extend beyond the observation radius
of the lone POI. On the right, two rovers are near a POI, but
multiple POI are found on the border. The agent has two re-
wards to choose from: a reward for going toward POI, and
a reward for going toward other rovers. This situation is de-
signed to test the agent in picking the obviously aligned re-
ward wherever it may find itself in the world. Plotted are
the local reward gradients for the POI reward (blue stars)
and the rover reward (green dots). The areas shown are the
most aligned reward at these points in the world, where the
reward gradient and the gradient of G strongly match. The
blank space is where G has no local gradient, so the each
reward is ambiguously aligned and is not shown for visual
clarity. As seen, the POI reward (blue stars) is correctly calcu-
lated as the most aligned reward in the situation at the bot-
tom left of theworld, as it homes the agent toward the region
of high reward, whereas the rover reward does not guaran-
tee moving the agent toward the POI observation area. The
inverse of this situation is seen in the situation at top right
of the world, with the Rover reward signal being calculated
as most aligned in the presence of multiple POI.

for a single agent show that combining policies trained on distinct

sub-rewards is effective at creating a robust policy. Teams using

difference rewards fail to learn an effective policy due to the tightly

coupled nature of the problem. Agents trained with a transfer learn-

ing approach can build up knowledge about converging around

POI, but only perform as well as some of the simple sub-reward

policies applied directly on the rover domain.

Agents selecting sub-rewards based on their alignment with the

global task objective show the highest performance. As seen in
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Figures 3 and 4, this increase in performance is also not due to any

specific sub-reward which efficiently solves the rover exploration

task. Instead, a combination of these sub-rewards is required to

achieve the increased performance.

Picking these sub-rewards by their alignment is effective because

it allows the agent to answer the question which reward matters
when? As seen in the analysis based on Figure 5, the agents calcu-

lating strongly aligned rewards are able to pick which sub-rewards

solve the current state best. We define rewards with alignment

values which are positive and higher for one reward than all others

to be strongly aligned. This, in turn, provides them a structured

manner to find the best action to take, which increases their overall

performance.

By picking the most aligned policies and deducing an action

from them, the agents are able to act as if they have a single policy

which was trained to solve the original, complex problem.

One immediate disadvantage of this method is that the agents

now need a policy for each sub-reward they will leverage to solve

the task. As task complexity increases, the number of sub-rewards,

and number of policies needed to train and remember, will increase.

For robotics applications such as this, we do not foresee remember-

ing policies becoming a direct inhibitor to solving the task due to

the ever decreasing cost of computer storage.

The additional computation needed to train policies for each sub-

reward may seem daunting, as now a variable number of neural

networks are being trained to replace a single neural network.

However, while using this alignment based policy selection does

require training several sub-policies, the sub-rewards can be simple,

and easier to learn than the general task as we have shown.

8 CONCLUSION AND FUTUREWORK
In this paper we introduce a method to tackle complex problems

where traditional reinforcement learning summarizes a lot of prob-

lem information into a single reward signal. We first introduce a

new take on reward alignment by looking at the local alignment
of two reward signals at a given state. Then, by decomposing the

original task into important sub-rewards and training policies on a

single sub-reward, we create a set of policies which maximize per-

formance on the sub-reward. Picking the most aligned sub-reward

at the current state creates agents which focus on the salient fea-

tures of a complex problem, so that they know what matters when
as they move through the world.

This effect was demonstrated on the tightly coupled rover do-

main, as well as hand-constructed rover domain instances which

tested the ability to correctly select aligned sub-rewards from the

input state of the world.

Further work of this research will look at extending alignment

learning to more domains to examine how to create sub-rewards

for a single reward signal. Currently, sub-rewards are still hand-

created and do not have a qualitative measure to differentiate a

good sub-reward from a bad sub-reward. Furthermore, multiagent

teams using alignment could generate human-level explanations of

their actions by describing which aligned sub-reward is selected at

a given time, and why it was the most aligned withG . Explanations
like these could serve as a new research direction into assured

autonomy and human robot interactions.
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