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ABSTRACT
Learning from demonstrations (LfD) has been successfully lever-
aged to speed up reinforcement learning techniques. This paper
investigates how to mitigate, or at least reduce, the impact of noisy
or poor demonstrations. In particular, we consider how heteroge-
neous demonstrators may provide inconsistent and/or even con-
flicting information, and noise may occur in otherwise high-quality
demonstrations, both of which can significantly affect the policy
generalization and hurt learning performance. To address the above
challenge, this paper develops a Flexible Two-level Structured Ap-
proach (FTSA) inspired by the existing Human Agent Transfer
algorithm and the multi-armed contextual bandit problem. Our
FTSA approach can mitigate the effects of bad demonstrations
while retaining the benefits provided by good ones. Our prelim-
inary experimental results in the Mario domain show that this
approach holds promise and may be able to successfully leverage
demonstrations of different quality.
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1 INTRODUCTION
Reinforcement learning [18] (RL) has hadmany successes in sequen-
tial decision tasks, where an agent learns to maximize a real-valued
reward. However, learning tabula rasa can be slow, particularly
in difficult domains. Learning from demonstration [1] (LfD) is an
alternative formulation where an agent typically learns to mimic a
human demonstrator. Following this general idea, a rich set of LfD
techniques have been developed. However, the majority of such
techniques are limited by the demonstrator’s performance: an LfD
agent’s goal is typically to mimic the human, while an RL agent’s
goal is to maximize total reward.

In this paper, we are concerned with how to best combine LfD
with RL so that we can reap the benefits of fast learning while not
being limited by the demonstrator’s ability. In particular, we fo-
cus on cases of heterogeneous demonstrations. One could consider
combining demonstrations from sources with different average
performances, or one demonstrator with a high variance in perfor-
mance. In both cases, we would like to maximize how much we can
learn from the demonstrators while minimizing how much poor
demonstrations hurt the learner.
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In dealing with this problem, several straightforward solutions
have been developed, including removing unnecessary or ineffi-
cient examples from the demonstration [9], requesting additional
clarifications [6], etc. However, those ideas try to eliminate the
effects of heterogeneous and noisy demonstrations by removing
them instead of trying to extract useful information and learn from
them. The challenge of how to effectively learn from heterogeneous
demonstrations, making use of the beneficial ones while avoiding
the influence of bad ones, still exists.

To address this challenge, we draw inspiration from the multi-
armed contextual bandit problem and propose a flexible two-level
structure based on the probability policy reuse scheme of HAT
(detailed in Section 2.2): level 0 uses multiple classifiers to sum-
marize demonstrations and level 1 takes advice from the low-level
classifiers and combines their opinions with the embedded decision
algorithm (e.g., majority voting).

Our preliminary experimental results inMario show that the two-
level structure can improve the overall performance (total reward)
and initial performance (jumpstart), while minimizing the effects
of bad demonstrations (relative to the existing HAT algorithm).

2 BACKGROUND AND RELATEDWORKS
This section briefly introduces the techniques needed to understand
this paper and related works in RL, LfD, and contextual multi-armed
bandit problem.

2.1 Reinforcement Learning
Reinforcement learning is an approach for an agent to learn from
experience through the interaction with the environment [18].
Markov Decision Processes (MDPs) are often used to formalize
RL tasks, whereA is the set of available actions, S is the set of states,
the reward function R : S × A → R is to be maximized, and the
transition function T : S × A→ S defines how the state changes
over time. Action-value function Q : S × A → R provides the es-
timated value of state-action pairs. At each time step, the agent
will select an action to execute and receive the states and reward
determined by the environment. The selection of actions follows a
policy π , which could be approximated with the estimated value of
a certain state-action pair Q(s, a). During the updating of Q(s, a), the
agent gradually improves the policy and maximizes the expected
reward. This could be done with different algorithms like SARSA,
Q-learning [21] (which is used in this paper), etc.

2.2 Learning from Demonstration
LfD is a useful technique to deal with the poor initial performance
of tabula rasa agents [1]. Demonstrations are usually trajectories
of state-action pairs performed by human (or, sometimes, other
agents). With demonstrations recorded from same or similar tasks,
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the agent could transfer the learned feature of neural networks [22],
learn heuristics for reward shaping [4], construct skill trees with
experience replay [12], etc.

Among those related works, the Human Agent Transfer [20]
(HAT) algorithm first summarizes the policies with a rule-based
learner (e.g., a Decision Tree) then uses the rule transfer [19] tech-
nique of transfer learning in a probabilistic policy reuse [8] (PPR)
manner, to speed up and improve the performance of the RL agent.
This paper also adopts the PPR technique, while focusing onmaking
use of multiple demonstrations regardless of their qualities.

There are also works that follow the Reinforcement Learning
with Expert Demonstrations (RLED) framework, which try to ex-
tract optimal policies by directly applying iterations on the demon-
stration data [5, 11, 16], identify relevant task features through
demonstrations and apply RL with the abstract state space [7], etc.
Different from those solutions, our approach focuses on guiding
the learning process using policies generalized from demonstra-
tions instead of explicitly using the demonstration examples as an
additional source for updating value estimates.

2.3 Learning from Multiple Experts
Online learning with expert advice could be viewed as contextual
multi-armed bandit problem [14], where the goal of the agent is
to compete against the best expert (that has the highest expected
reward). At each time step, an expert will generate advice about the
arm selection based on the current context, and the agent will build
a strategy of pulling the arm, considering all the given advice, and
dynamically update its belief of each expert [23]. The most relevant
work is the Exponential-weight Algorithm for Exploration and
Exploitation using Expert advice (EXP4) algorithm [2], and similar
ideas are also adopted in this paper. Additionally, such modeling
could be applied to applications like recommendation [13], selecting
state machine policies for robotic systems [15], etc.

3 A FLEXIBLE TWO-LEVEL STRUCTURED
APPROACH TO LEARNING FROM
MULTIPLE DEMONSTRATIONS

In this section, we propose a Flexible Two-level Structured Ap-
proach (FTSA) to address the problem of combiningmultiple demon-
strations. This approach integrates the multi-armed bandit ap-
proach with the probability policy reuse scheme of HAT and allows
the agent to take advantage of multiple demonstrations regardless
of their quality.

3.1 Problem Statement
We formalize the problem of learning from multiple demonstra-
tions as a contextual multi-armed bandit problem with following
notation:

• K number of actions
• N number of classifiers/experts/oracles, where each is trained
on a demonstration
• D demonstration data set, eachdi is a recording of an episode,
and contains state/action pairs
• t time step, where the agent will select actions and execute
at each t

• ξ policy advice vector: ξ i
t, j is demonstrator i’s recommended

probability of choosing arm (action) j at round t
• r reward vector with dimension of K , all the elements in
r are zero, except the one corresponds to the selected arm
(action)
• xt context vector, used by classifiers to generate advice, could
be the state vector from task environment, etc.

Generally, each classifier is trained with a demonstration and
at round t , classifier i will give its estimation of probability ξ i

t, j of
selecting action (arm) j based on the context vector xt , the agent
will then decide to trust and follow a classifier’s advice or not, pick
one action (arm), and continue the RL steps.1

3.2 Method Description
The entire procedure is built on the framework of HAT, and the
multi-armed bandit selection could be captured with this two-level
structure:

Figure 1: Two-level Structure of bandit selection

With the HAT framework, the agent will adopt the advice from
classifiers with a certain probability ϕ (which decays over time).
Each level-0 classifier is trained with one demonstration,2 and will
generate advice vector according to different context vectors; level-
1 could embed with any algorithms to combine all the advice from
level-0 classifiers and provide the final suggestion for the agent to
select. With this two-level structure, the agent could then make use
of knowledge from multiple different demonstrations regardless
of their quality. Various algorithms and schemes could be adopted
into level-1 as the decision component. In this work, we pick ma-
jority voting, Exponential Weighted Algorithm (EWA), and a meta-
classifier as examples to show how this approach works.

3.2.1 Majority Vote. When combining the advice with majority
voting, the entire structure will become similar to the Bagging
ensemble method [3]. The difference is that the training data are
not generated with bootstrap sampling, but directly use the data
from different demonstrators to build each base classifier. And this
voting scheme may not be able to reduce the “variance,” but only
to combine multiple advice and get a final output suggestion. Since
each classifier is treated equally, this method works well when
the quality of most demonstrations are good or similar to each

1It is possible the expected regret for each classifier could be defined and calculated,
but we leave this to future work.
2Future work will consider training each classifier per demonstrator.



Work-In-Progress: Enhanced LfD with a Two-level Structured Approach AAMAS’18, July 2018, Stockholm, Sweden

Algorithm 1: Flexible Two-level Structured Approach for LfD
Input :Demonstration data set D = {d0;d1; :::;dn }, reuse

probability Φ0, decay rate ΦD

1 Φ← Φ0
2 for demonstration di ∈ D do
3 Train classifier ci with di . Build level-0 classifiers
4 end
5 Initialize level-1 algorithms
6 . Update weights for each classifier, build a meta-classifier, etc.
7 for each episode do
8 Initialize state s0
9 for step t do

10 Get state vector st , reward rt
11 a ← ϕ

12 if rand() ≤ Φ then
13 Construct context vector xt with st
14 for each classifier ci do
15 Get ξ i

t with xt
16 end
17 Apply level-1 algorithms to select action a

18 . majority vote, value estimation, classification, etc.
19 else
20 if rand() ≤ ϵ then
21 a ← random action
22 else
23 a ← arдmaxaQ

24 Execute action a

25 Update Q-value (with SARSA, Q-Learning, etc.)
26 Φ← Φ ∗ ΦD
27 end
28 end

other, as the advice from those few classifiers trained with bad
demonstrations will be ignored.

3.2.2 Exponential Weighted Algorithm (EWA). When combining
the advice with EWA, the structure will be similar to the EXP3
and EXP4 bandit algorithms. In contrast to EXP3 or EXP4, the
exploration/exploitation balancing will not be handled by EWA
itself, but by the HAT framework. A weight will be initialized
equally and assigned to each classifier, and then the algorithm
will exponentially decay the weights of classifiers based on their
advice during iterations. The update of the weights could use the
reward from the environment or other loss functions. In each round,
the agent could estimate the reliability of each classifier based on
the advice they give and choose which classifier to listen to. In this
way, the EWA method could handle the blending of good and bad
demonstrations.

3.2.3 Meta-Classifier. We could also build a meta-classifier on
level-1 based on the advice of level-0, similar to the Stacking (stacked
generalization) ensemble method. The difference is that the stacking
method is built in a cross-validation manner, and here the level-1
classifier is trained with the same context of demonstration data

but replaces the original label with predictions of level-0 classifiers.
The level-1 classifier could use either the same base classification
method as level-0 does, or different methods.

4 EVALUATION
This section discusses the empirical evaluation of the proposed
methods.

4.1 Experimental Setting
Our approach is evaluated with the Mario simulator released by
Karakovskiy [10], based on the Nintendo’s platform game Super
Mario Bros. The agent is trained to get as high a score as possible.
The state is composed of 27 state variables and includes both nu-
meric and Boolean variables; there are 3:65× 1010 different discrete
states in total (although many are unreachable in practice). The
agent can choose 12 different actions with the combinations of
three sets: {left, right, no action}, {jump, do not jump}, {run, do not
run}. The agent will receive +10 for jumping on an enemy, +58 for
eating a mushroom, +64 for eating a fire-flower, +16 for collecting
a coin, +24 for finding a hidden block, +1024 for clearing the level,
-42 for getting hurt by an enemy, and -512 for dying [17].

To investigate whether our approach could learn reasonable per-
formance with multiple demonstrations, we conduct experiments
with 10 good demonstrations (23,259 state/action example pairs in
total), 10 good demonstrations and 20 bad demonstrations (48,852
examples in total), and 20 bad demonstrations (25,594 examples
in total).3 We use the J48 decision tree to build base classifiers in
level-0 and the following algorithms are embedded in level-1:

(1) Majority vote
(2) Exponential Weighted Algorithm, where η = 0:001, iterate

for 100 rounds;
(3) Meta-classifier, using J48 as level-1 classifier.
All “good” demonstrations are recorded with a well-trained Q-

learning agent playing Mario, with an average score of 3,408.4; bad
demonstrations are recorded with a simple agent, the average score
is -267.6. The baseline is the Q-learning agent without any prior
knowledge. We also adopt the HAT agent with J48 as a benchmark
method (which uses a merged data file of multiple demonstrations
as input).

For the evaluation metrics, we consider 1) Jumpstart, the im-
provements of initial performance vs. the benchmark agent; and 2)
Total Reward, the accumulated reward achieved by an agent (i.e.,
the area under the learning curve).

4.2 Results and Discussion
To present the results of the experiments, we plot the learning
curves with the averaged score over 10 runs of 50,000 episodes with
a sliding window of size 3,000.

According to Figure 2, when using 10 good demonstrations, the
performance of the proposed approach is much better than the
baseline, and could converge to a similar performance level of HAT;
at the beginning stage, HAT has the highest jumpstart, and FTSA
with majority vote has the lowest jumpstart, while the jumpstarts
3We choose the combination of 10 good demonstrations and 20 bad demonstra-
tions to present approximately the same number of examples from good and bad
demonstrations.
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Figure 2: With 10 good demos

Figure 3: With 10 good demos and 20 bad demos

of using EWA and the meta-classifier lie between. However, even
with a low jumpstart, the performance of FTSA with all different
methods could catch up with the performance of the HAT within
5,000 episodes.

Figure 3 shows the performance of training an agent with the pro-
posed approach using 10 good demonstrations and 20 bad demon-
strations. With the blending of good and bad demonstrations, both
HAT and FTSA with all the methods could outperform the baseline;
the jumpstart of HAT is lower than the approach with EWA and
majority vote but higher than FTSA with meta-classifier; the per-
formance level of all the methods will converge to a similar level
between 15,000 to 20,000 episodes.

From Figure 4, we could observe that, with 20 bad demonstra-
tions, FTSA with majority vote and EWA could still provide some
benefit to the jumpstart, while HAT and FTSA with meta-classifier
could not. With the bad jumpstarts, the performance of HAT and
FTSA with the meta-classifier could converge to a higher level
than the baseline after 10,000 episodes, even though they could not
benefit from the demonstrations at the beginning stage.

Table 1 shows the jumpstart and total reward of each method
when experimenting with different blendings of demonstrations.
The jumpstart is the subtraction of the initial reward of the baseline
from the average initial reward of each method (the jumpstart of

Figure 4: With 20 bad demos

the baseline is defined as 0). From the table, we could tell that with
the increasing amount of bad demonstrations, the jumpstart and
total reward of HAT declines. However, our FTSA with EWA and
Majority Vote have a robust performance on those twometrics. Also,
note that FTSA with the Meta-classifier also seems more vulnerable
to the bad demonstrations than FTSA embedding with the other two
algorithms—this may be related to the selection of meta-classifier
and other factors. We also conduct Welch’s t-test on the experiment
results. With p < 0:05, we can say that the FTSA with Majority Vote
and FTSA with EWA could significantly outperform HAT when
provided 10 good demonstrations and 20 bad demonstrations, as
well as when provided 20 bad demonstrations.

According to the experimental results, this 2-level structure could
efficiently capture the knowledge from multiple demonstrations.
Embeddedwith different bandit algorithms, it could eliminate the ef-
fects of bad demonstrations better than the classical HAT approach
and enable the agent to make better usage from the blending of
demonstrations without the assumption of using good or expert
level demonstrations.

5 CONCLUSION AND FUTUREWORK
In this paper, we introduced a Flexible Two-level Structured Ap-
proach (FTSA) to address the task of combining policies learned
from multiple demonstrations with different quality. With the prob-
abilistic policy reuse scheme and algorithms from multi-armed
contextual bandit problems, this approach could summarize and
then combine advice from different demonstrations. With the ex-
perimental results in the Mario domain, particularly in scenarios
where there are bad demonstrations, this approach could outper-
form the HAT in both overall performance (learning curve), initial
performance (jumpstart), and total reward. We can therefore con-
clude that this two-level structure enables the agent to benefit from
multiple demonstrations efficiently while eliminating the effects of
bad demonstrations.

To improve this idea, first we would like to conduct more exper-
iments: Try embedding more different algorithms other than those
mentioned in this paper, theoretically analyze the pros, cons and
robustness of each algorithm; Evaluate this approach with different
combinations of demonstrations (i.e., a skewed combination of 95
bad demonstrations and 5 good demonstrations); Adopt other LfD
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Table 1: Jumpstart and Total Reward of different methods with blending of demonstrations

Demonstration 10 good demos 10 good demos + 20 bad demos 20 bad demos
Jumpstart Total Reward (×107) Jumpstart Total Reward (×107) Jumpstart Total Reward (×107)

Q-learning 0 6.541 0 6.541 0 6.541
HAT 565.020 7.266 390.344 7.116 57.629 6.922
FTSA with EWA 469.113 7.210 485.940 7.130 447.808 7.099
FTSA with Majority Vote 216.315 7.067 460.404 7.144 324.007 7.046
FTSA with Meta-Classifier 450.646 7.053 277.669 7.022 - 8.873 6.855

algorithms other than HAT as baseline method, like DPID [5], etc.
Second, we are going to investigate the possibility of combining
a confidence-based decision scheme into this approach. Third, we
would like to further explore the performance of our FTSA scheme
in both online (i.e., iterating with real-time state-action sequences)
and offline (iterating with the demonstration examples) settings
and analyzing the difference, if there is any. Fourth, considering the
noise and irregularity of the collected demonstration data, more
analysis of the demonstrations could also help with the perfor-
mance and explainablity. For example, looking into the context
of good and bad examples or extracting higher-level information
with unsupervised methods might help in seperating out the good
examples (sequences) from the bad demonstrations and vice versa.
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