
Efficient Exploitation of Factored Domains in Bayesian
Reinforcement Learning for POMDPs

Sammie Katt

Northeastern University

katt.s@husky.neu.edu

Frans A. Oliehoek

University of Liverpool, and

Delft University of Technology

f.a.oliehoek@tudelft.nl

Christopher Amato

Northeastern University

camato@ccs.neu.edu

ABSTRACT
While the POMDP has proven to be a powerful framework to model

and solve partially observable stochastic problems, it assumes ac-

curate and complete knowledge of the environment. When such

information is not available, as is the case in many real world appli-

cations, one must learn such a model. The BA-POMDP considers

the model as part of the hidden state and explicitly considers the

uncertainty over it, and as a result transforms the learning problem

into a planning problem. This model, however, grows exponentially

with the underlying POMDP size, and becomes intractable for non-

trivial problems. In this article we propose a factored framework,

the FBA-POMDP that represents the model as a Bayes-Net, dras-

tically decreasing the number of parameters required to describe

the dynamics of the environment. We demonstrate that the our ap-

proach allows solvers to tackle problems much larger than possible

in the BA-POMDP.

1 INTRODUCTION
Robust decision-making agents in any non-trivial system must rea-

son over uncertainty in various dimensions, including the current

state, the outcome of possible actions, and the dynamics of the envi-

ronment. The outcome and state uncertainty are elegantly captured

by POMDPs [6], which enable planning in stochastic and partially

observable environments.

The POMDP, however, assumes direct access to the system dy-

namics, which unfortunately are often not easily available. When

such a model is not available, the problem turns into a Reinforce-

ment Learning challenge, where one must consider both the poten-

tial benefit of learning (exploration) and exploiting current knowl-

edge. To answer the exploration-exploitation trade-off problem in

a principled way, model-based Bayesian RL maintains a posterior

distribution over the unknown model parameters, encouraging ex-

plicit reasoning over the uncertainty over them. Recently these

models have been extended to partially observable models [9], but

fail to scale to bigger domains unless some structural assumptions

are made a-priori. Other work has considered a factored representa-

tion of the state space, effectively reducing the number of unknown

parameters [8]. Their formulation, however, does not accommo-

date for environments with partially hidden states or where the

perception of the state is noisy.

In this work we propose a Bayesian approach towards learning

a factored representation of the dynamics of a system, called the

Factored Bayes-Adaptive POMDP, which allows for simultaneous

planning and learning in a partially observable stochastic environ-

ment with unknown dynamics. This method utilizes Bayes-Nets

to describe dynamics, which exploits conditionally independence

relationships, effectively decreasing the number of unknown param-

eters to learn. Additionally we describe a solution method based on

a Monte-Carlo Tree Search solution method and a mechanism for

maintaining a belief in the FBA-POMDP, and demonstrate through

experiments that this approach is able to learn and solve problems

that previous work is unable to tackle.

2 BACKGROUND
Here we first provide a summary of the preliminary literature. Sec-

tion 2.1 describes the POMDP and BA-POMDP framework, followed

by a review on Bayesian Networks in Section 2.3.

2.1 The POMDP & BA-POMDP
The POMDP [6] is a general model for decision-making in stochas-

tic and partially observable domains, with execution unfolding over

(discrete) time steps. At each step in a POMDP, the agent selects an

action that triggers a state transition in the system, which generates

some reward and observation. The observation is perceived by the

agent and the next time step commences. Formally, a POMDP is

described by the tuple (S ,A,Z ,D, R,γ ,h), where S is the set of states
of the environment; A is the set of actions; Z is the set of observa-

tions; D is the ‘dynamics function’ that describes the dynamics of

the system in the form of transition probabilities D(s ′, z |s,a);1 R is

the immediate reward function R(s,a) that describes the reward of

selecting a in s ; γ ∈ (0, 1) is the discount factor; and h is the horizon

of an episode in the system. In this description of the POMDP, D
captures the probability of transitioning from state s to the next

state s ′ and generating observation z in the process (for each action

a).
The goal of the agent in a POMDP is to maximize the expected

cumulative (discounted) reward, also called the expected return.

The agent has no direct access to the system’s state, so it can only

rely on the action-observation history ht = ⟨a0, z1, . . . ,at−1, zt ⟩ up
to the current step t . It can use this history to maintain a probability

distribution over the state, also called a belief, b(s). A solution to a

POMDP is then a mapping from a belief b to an action a, which is

called a policy π . Solution methods aim to find an optimal policy,

a mapping from a belief to an action with the highest possible

expected return.

The BA-POMDP [9] (S ′, A, Z , D ′, R, γ , h) is yet another, larger,
POMDP that characterizes the problem of optimal sequential decision-

making in the original underlying POMDP with uncertainty over

1
This formulation generalizes the typical formulation with separate transition T and

observation functions O : D = ⟨T , O ⟩. In our experiments, we do employ this typical

factorization.

the dynamicsD in the form of Dirichlet distributions.
2
Conceptually,

if one could observe both states and observations, then it is possible

to maintain a vector χ with the counts of the occurrences for all

⟨s,a, s ′, z⟩ tuples, where we write χs
′z

sa for the number of times that

s,a is followed by s ′, z. While the agent cannot observe the states

and has uncertainty about the actual count vector, this uncertainty

can be represented the using regular POMDP formalism. That is, the

count vector is included as part of the hidden state of the POMDP.

While the observation and action space remain unchanged, the

state (space) of the BA-POMDP now includes the counts: s̄ = ⟨s, χ⟩.
The dynamics of the BA-POMDP, D̄ = P(s ′, χ , z |s, χ ,a), factorize
to P(s ′, z |s, χ ,a)P(χ ′ |s, χ ,a, s ′, z), where P(s ′, z |s, χ ,a) corresponds

to the expectation of Ds ′z
sa according to χ :

P(s ′, z |s, χ ,a) = Pχ (s
′, z |s,a) = E[χs

′z
sa] =

χs
′z

sa∑
s ′z

χs
′z

sa
(1)

Then, if we let δs
′z

sa denote a vector of the length of χ containing

all zeros except for the position corresponding to ⟨s,a, s ′, z⟩ (where
it is 1), and if we let Ia,b denote the Kronecker delta that indicates

(is 1 when) a = b, we can write P(χ |s, χ ,a, s ′, z) as Iχ ′, χ+δ s′zsa
.

2.2 Solving BA-POMDPs
For an agent to make rational and informed decisions it can base

its actions only on the action-observation history. Because an in-

teraction with the environment can be of arbitrarily length, it is

infeasible to compute the optimal action for any possible history.

Alternatively, the agent may keep track of a probability distribu-

tion over the current state, also called the belief b. Given an initial

belief b0, and some sort of belief update τ : (b,a, z) → b ′, the agent
solution to the problem is a policy that maps any belief to an action

π : b → a. The next paragraph describes how one could go about

solving a BA-POMDP, assuming some belief tracking mechanism

is given. After which we discuss the most common belief update

schemes for the BA-POMDP.

While the BA-POMDP is a POMDP, typical POMDP solvers are

unable to deal with the (uncountably) large size of this model. In

particular offline planners, which attempt to solve the problem for

each possible belief or history sequence, struggle with the state

space. Fortunately, the complexity of Monte-Carlo Tree Search[2, 3]

(MCTS) is independent of the state space and thus has proven to be a

reliable approach in the form of the BA-POMCP solutionmethod [7].

BA-POMCP estimates the expected value of each possible action

at each time step in an online fashion. It does so by building up

a look-ahead tree from simulated interactions with environment.

Each such simulation first traverses through the action-observation

branches in the current tree, and ends with extending the tree with

a set of nodes once it reaches a leaf. At that point it evaluates the

leaf, which is typically done via a roll-out with the environment

until a terminal state or some maximum depth has been reached.

A simulation starts with sampling a state from the current be-

lief and traverses the tree by picking actions using UCB [1] and

sampling state-observation pairs using the counts as described in

Algorithm 1. At the end of each simulation the accumulated return

2
[9] follows the standard T & O POMDP representation, we use the combined D

formalism for brevity.

is propagated back up into the tree and used to update the statistics

at each node: the number of times the node has been visited and the

average (discounted) return. The algorithm picks the action at the

root of the tree that has accumulated the highest average return,

after the action selection time has terminated or a fixed number of

simulations have ran.

Algorithm 1 Simulate(s̄,d,h)

if IsTerminal(h) | | d equalsmax_depth then
2: return 0

end if
4: //Action selection uses statistics stored at node h:

a ← UCBActionSelection(h)
6: R ← R(s̄, a)

s̄′, z ← Step(s̄, a)
8: h′ ← (h, a, z)

if h′ ∈ T ree then
10: r ← R + γ Simulate(s̄′, d + 1, h′)

else
12: ConstructNode(h′)

r ← R + γ Rollout(s̄′, d + 1, h′)
14: end if

//Update statistics:

16: N (h, a) ← N (h, a) + 1

Q (h, a) ← N (h,a)−1

N (h,a) Q (h, a) +
1

N (h,a) r
18: return r

Note that, in BA-POMCP, the state sampled at the start of a

simulation s̄ consist of both a domain state s and a set of counts χ .
The counts are key to the simulations, as they provide a model for

the interactions with the environment (algorithm 2).

Algorithm 2 STEP(s̄ = ⟨s, χ⟩,a) (for BA-POMCP)

Dsa ← E[χsa]
2: ⟨s′, z ⟩ ∼ Dsa

χ s
′z

sa ← χ s
′z

sa + 1

4: s ← s′

return s̄, z

Belief tracking: For finite state spaces, one can compute the exact

belief naively by iterating over all the possible new states using the

model’s dynamics. This approach is expensive and practical only

in very small environments. As a feasible alternative, it is common

to use particle filters [10] as an approximation method instead. The

particles may be associated with some weightw , which represents

the probability of that state:
w∑K
i=1

wi
. There are numerous methods

to update the particle filter when observing z after executing action
a, such as Rejection Sampling and Importance Sampling. Rejection
Sampling in general consist of sampling a value from some process,

and then rejects or accepts it according to some condition. Here the

process consists of simulating an interaction with the environment,

where the condition is whether the generated observation matches

that of the environment. More specifically, we first sample a particle

from our particle filter, followed by a simulated step in the model,

where a new state s̄ ′ and observation zsim is generated together

with an update particle. If that observation equals the actual ob-

servation perceived from the environment, then we add s̄ ′ to our

2

new particle filter. If not, then we reject (ignore) that particle. This
operation continues until the number of particles in the new belief

equals K (algorithm 3).

Algorithm 3 Rejection Sampling(K ,b,a, z)

b′ ← {}
while size(b′) is not K do

s̄ ∼ b
⟨zsim, s̄′⟩ ∼ D(s̄, a)
if zsim equals z then

add s̄′ to b′

end if
end while
return b′

An alternative popular approach is Importance Sampling, which
assigns weights to each particle, representing its probability within

the distribution. There are multiple ways of updating the belief

with this method, of which the one described by algorithm 4 is

used in this paper: all particles go through a simulation step, during

which we calculate the probability that this particle would have

generated the perceived observation, and assign that probability

as weight. This process concludes with a re-sampling step, which

samples K particles from the new posterior to generate a ‘flat’ filter,

where all K particles represent the same
1

K weight.

Algorithm 4 Importance Sampling(K ,b,a, z)

b′ ← {}
for i ∈ 1 . . . K do

s̄ ∼ b
⟨ziдnored , s̄′⟩ ∼ D(s̄, a)
w ← O (z |a, s̄′)
add ⟨s̄′, w ⟩ to b′

end for
return r esample(b′)

2.3 Bayes-Networks
Bayes-Networks (BNs) are graphical models that define joint distri-

butions over n variables X={x0, . . . ,xn } according to some (non-

cyclic) structure (or topology) G, which induces the conditional

dependencies. The probability that a variable xi takes on some

value v is specified by the Conditional Probability Tables (CPTs)

PG,θ (xi=v |PVG (xi)=Ei) = θ
i,v |Ei
G (2)

and depends on the value of the parents PVG (xi) = Ei . The joint
probably of some set of variables X is then described by

PG,θG (X |PVG (X)) =
∏

i ∈1...n
PG,θ (xi |PVG (xi)) (3)

Example: To illustrate the advantage of a compact representation

of a process, consider figure 1 which shows an example of 2 BNs that

describe different structures for an imaginary transition function

between states with 3 features {X1, X2 & X3 }. Features in highly

structured problems have few transition conditions, which result

in smaller BNs (fewer connections) and thus fewer parameters. The

graph (left) in figure 1, for example, contains |X1 | × |X2 | × |X3 |

parameters to describe the conditional probabilities for node X2 in

t + 1, while (right) graph 1 only requires |X1 | × |X2 | parameters.

Figure 1: Two Bayesian Networks. The arrow xi ← x j indi-
cates that x j depends on xi .Right contains fewer parameters
compared to Left

Learning BNs: For our purposes we are interested in Bayesian

approaches for learning BNs given some data D: P(G,ϕG |D). This
is typically specified as the joint P(G |D)P(θG |G,D). We make the

standard assumption that the prior P(θG |G) is factorized into a

product of Dirichlets: P(θ
i |E
G |G) = Dirichlet(ϕ

i |E
G). P(θG |G,D) is

then easily computed by incrementing ϕ
i,v |E
G for each instance

of {Xi= v |PVG (Xi)=E} in D. The posterior distribution over the

topology P(G |D) can rarely be computed in closed form, as there

are O(n!2
(n
2
)) [8] possible structures. In this work we consider the

Metropolis-Hastings algorithm as an approximation method [4].

Given a proposal distribution q(G ′ |G) from which we can sam-

ple moves from one graph G to another G ′, a prior distribution

over all graphs P(G) and a scoring metric for how well a graph

explains the data P(D |G). Then Metropolis-Hastings specifies that

we can approximate P(G |D) by sampling graphs G ′ with probabil-

itymin{1,
P (D |G′)P (G′)q(G |G′)
P (D |G)P (G)q(G′ |G) }. To simplify this computation, one

typically assumes a uniform prior P(G) and a symmetric proposal

distribution q(G ′ |G) that consists of either adding or removing an

edge in G. Lastly, P(D |G) can be computed in closed form with the

likelihood-equivalence Bayesian Dirichlet score metric (BDe) [5].

3 BAYESIAN RL IN FACTORED POMDPS
The BA-POMDP allows the agent to do informed decision making

despite the challenges it faces due to uncertainty. The number

of parameters grow quadratic in the state space: O(|S |2 |A| |Ω |), of
which only 1 is updated after a new observation. We argue that

many applications allow for generalization through conditional

independence in the dynamics.

To illustrate this, consider a vacuum robot in a two-dimensional

grid, tasked with cleaning dirty cells. Whenever the agent attempts

to move east, its new location is the current location plus one step

to the right (assuming the move is always successful). This is the

case, regardless of the y-position and is also independent of which

cells are dirty. In the regular BA-POMDP belief updates, however,

3

such transition would only affect the parameters concerned with

that particular state, where the agent is on that specific y-position,

and certain cells are dirty. If the agent ever returns to a similar state,
but with a different set of dirty cells, it will not be able leverage the

knowledge it could have, had it known that a new location (when

going east) is only dependent on the current x-position.

The next section (3.1) introduces a novel model, the FBA-POMDP,

to exploit structure in Bayesian model-based Reinforcement Learn-

ing. In section 3.2 we propose an extension of the BA-POMCP

method adapted to the factorized model, and 3.3 describes a belief

tracking methods specifically designed for FBA-POMDP.

3.1 The Factored BA-POMDP
First let us describe the state and observation space (S,Ω) in terms

of features x = {x1 . . . xn }, y = {y1 . . .ym }, for n state and m
observation features.We then describeD, of the underlying POMDP,

in terms of a collection of BNs, one for each action a, and their

parameters, ⟨G,θG ⟩ (figure 2 describes one such graph Ga
).

x1

x2

x3

x'1

x'2

x'3

y2

y1

Figure 2: A possible instantiation of a dynamics model D in
a factored POMDP for a domain with 3 state features and 2

observation features

In case the structureG is known a-priori, it is easy to see that we

could define a Bayes-Adaptive model with counts χG as belief over

θG . The (important) difference with the BA-POMDP here is that χG
has fewer parameters and thus the belief would converge quicker

to the true model. However, this assumption is unrealistic, and we

must consider the structure as part of the hidden state space too.

As a result, the state space consists of the domain (factored) state

space, the space of possible graph structures, and the possible count

assignments: s̄ = ⟨x ,G, χG ⟩. Now let us formulate the dynamics D̄
of this model using the standard Bayes-rule:

D̄(x ,G, χG ,a,x
′,G ′, χ ′G′ ,y) = (4)

P(x ′,G ′, χ ′G′ ,y |x ,G, χG ,a) =P(x
′,y |x ,G, χG ,a)× (5)

P(G ′ |x ,G, χG ,a,x
′,y)× (6)

P(χ ′G′ |x ,G, χG ,a,x
′,G ′,y) (7)

P(x ′,y | . . .) (5) corresponds to the expectation of the joint distri-

bution PχaG (x
′,y |x), denoted as DχG (x ,a,x

′,y), and factorizes as a

BN according to structure G:

DχG (x ,a,x
′,y) =

∏
n∈x ′,y

ˆθ
n |PV (n)
Ga

where
ˆθ are the expected CPT parameters EχGa [θ].

Then, if we define δ
xax ′y
G as a set of zero counts except on the

locations corresponding to the nodes x ′
1
. . . x ′n and y1 . . .ym and

their associated parent values, where they are 1. Then we define

the count update equation P(χ ′G′ | . . .) (7) as Iχ ′G , χG+δ
xax ′y
G

. Lastly,

it is important to note that we assume that the topology of G is

static, thus P(G ′ | . . .) (6) is IG′,G . Putting this together, the complete

formal definition of the FBA-POMDP is:

• Ā = A, R̄ = R, γ̄ = γ , ¯h = h: Identical to POMDP definition

• Ω̄: Y . Set of possible observations defined by their features.

• S̄ : S ×GA × χGA . The cross product of the domain’s factored

state space and the set of possible models in the form of BNs

per action, where χGA represent the counts to describe the

probability over the conditional probabilities in GA
in the

form of Dirichlet Distributions.

• D̄: P(x ′,G ′, χ ′G′ ,y |x ,G, χG ,a) =

DχG (x ,a,x
′,y)I

χ ′G , χG+δ
xax ′y
G

IG′,G

3.2 Monte-Carlo Tree Search for FBA-POMDPs
Solving the FBA-POMDP faces similar challenges as BA-POMDP

solvers do with respect to uncountable large (hyper-) state spaces

and uncertainty over current state and the dynamics. So it is only

natural to look at BA-POMDP solution methods for inspiration,

and to extend Monte-Carlo Tree Search to the FBA-POMDP in a

similar spirit as was done to design BA-POMCP. Recall that these

methods could not directly be applied to the Bayes-Adaptive set-

ting, as they assume access to the underlying dynamics. This was

circumvented in BA-POMCP by sampling and utilizing the counts

χ at each simulation as a model. Instead, in the factored setting,

we sample a ⟨G, χG , s⟩ tuple at the start of each simulation, and

use those throughout to simulate steps. This is best illustrated in

algorithm 5, which replaces the BA-POMCP step of algorithm 2 in

the main loop (algorithm 1).

Algorithm 5 STEP (s̄ = ⟨G, χG ,x⟩,a) (for FBA-POMDP)

Dxa ←
∏
n
E[χn |PV (n)Ga]

⟨x ′, z ⟩ ∼ Dxa
//Increment count of each node - parent combination

for each node n ∈ χGa and its value v ∈ x do
χn,v |PV (n)Ga ← χn,v |PV (n)Ga + 1

end for
x ← x ′

return s̄, z

Note that the others techniques that can be incorporated into

BA-POMCP, such as root sampling, linking states and sampling

directly from the expected model of χ , are equally applicable to

FBA-POMCP.

4

3.3 Structure rejuvenation
The particle filter approach towards maintaining the belief as de-

scribed in section 2.2 can be naturally extended to the FBA-POMDP

case: each particle consists of a domain state, graph topology and

corresponding counts ⟨s,G, χG ⟩, and the simulation step in line 4

and 4 in respectively algorithm 3 and 4 is sampled according to D̄
of the FBA-POMDP definition.

However, these methods only update the counts and are not

particular well designed to represent or update the probability over

the graph topology. We propose to address this issue through (parti-

cle) reinvigoration by means of the Metropolis-Hastings algorithm

as described in section 2.3. We sample graphs ⟨G, χG ⟩ from our

current belief and compare their BD score to a proposed modi-

fication ⟨G ′, χG′⟩, given the prior ⟨G, χ0

G ⟩ and ⟨G
′, χ0

G′⟩. Once K
particles have been accepted we have rejuvenated our belief with

new structures consistent with our history.

We propose to compute χG′ by sampling a complete historyH =
⟨x ,a,x ′,y⟩ trajectory that is consistent with h, similarly to how the

counts in the particles of the current belief have been accumulated

through Rejection Sampling. This operation is expensive and linear

in the size of the history, and should be used only when necessary.

We use the overall likelihood L of the current belief to decide when

to apply Metropolis-Hastings. L happens to be calculated directly

in the form of the accumulated weight during Importance Sampling

in line 5.

4 EXPERIMENTS
The previous section introduced a factored Bayes-Adaptive ap-

proach towards learning in POMDPs in combination with a specifi-

cally design solution and belief tracking method. Here we provide

empirical support for this approach on an extension of the well-

known Tiger problem [6].

4.1 Setup
Parameters: The parameters of FBA-POMCP and the belief up-

date methods are consistent across the different approaches we

compare. In particular, the Monte-Carlo Tree Search solution meth-

ods performs 4096 simulations and use a random policy during the

roll-outs. The particle filters contain 1024 particles, and we have

applied basic Importance Sampling whenever ‘MH’ is not explicitly

mentioned as belief update algorithm. We resample particles using

Metropolis-Hastings whenever the log likelihood falls below−10. In

our experiments we compare the average return over 400 episodes,

plotting the performance against time. The expected average return

of a single episode with these parameters, given a perfect model, is

approximately 3.1.

Factored Tiger Problem: The Tiger domain, arguably the smallest

possible POMDP, describes a scenario where the agent is faced

with the task of opening one out of two doors. Behind one door

lurks a tiger, a danger and reward of −100 that must be avoided,

while the other door opens up to a bag of gold for a reward of 10.

The agent can choose to open either doors (which terminates the

episode) or to listen for a noisy observation, for a cost of 1. This

observation informs the agent of the location of the tiger with

85% accuracy. We propose to extend this domain with additional,

uninformative, binary state features and call it the Factored Tiger

problem. A state in the Factored Tiger problem with f extra at-

tributes contains 1+ f features: s = {tiдer−location,x2, . . . ,xf +1
}.

These state features have no effect on the observations, and do not

change over time. The observation space consist of a single binary

feature y = {tiдer−location} that indicates behind which door the

tiger is heard. As a result the state space S increases by a factor 2

with each additional feature, while the complexity of the under-

lying dynamics remains unaffected. The agent, however, does not

necessarily know this, as it is unfamiliar with the exact observation

probabilities. Note that for f binary state features (of which only

the location is informative), the agent must maintain a belief over

2 ∗ 2
f
counts: a count for each probability p(o |s ′,a=listen), where

s ′ grows 2
f
. Here we consider the case of f = 7 uninformative

binary state features.

We assume the reward and state transition model are known,

but the parameters of the observation model are not. The agent’s

initial belief over those parameters are captured with the counts

c = {ct=5, cf =3}, where ct is the count for hearing the tiger’s loca-
tion correctly and count cf is assigned to hearing the tiger behind

the other door. This describes an expected accuracy of %62.5 (as

done in [7, 9]). We consider both a prior where the topology of the

observation function is known (Pk) and unknown (Pu), where it
assigns a uniform probability distribution over the assignment of

parents for the observation node. Note that graphs Gl isten
, where

the observation does not depend on the tiger’s location, cannot rep-

resent c ; the counts for particles with such topologies in the agent’s

initial belief is uniform (cunif = {4, 4}). As a result, approximately

half of that prior assigns uninformative counts to the observation

function.

We run a total of 4 solution methods on the Factored Tiger

problem with 7 extra uninformative binary features (figure 3). The

bapomdp line corresponds to the baseline ‘BA-POMCP’ on the (flat)

BA-POMDPmodel, whereas ‘known structure’ and ‘unknown struc-

ture’ describe the performance on the FBA-POMDP model with

respectively prior knowledge of the structure Pk and a uniform

distribution Pu . Lastly, we compare this to our implementation

labelled ‘MH’, which starts with the uniform topology prior Pu .

0 50 100 150 200 250 300 350 400
episodes

8

6

4

2

0

2

4

re
tu

rn
 p

er
 e

pi
so

de

bapomdp
known structure
unknown structure
MH

Figure 3: Average return on the Tiger problem

5

4.2 Analysis
Effect of knowing the structure: We first observe that the ‘known

structure’ and ‘bapomdp’ variant perform better at t=0. This verifies

the earlier statement that a prior where half of the particles do not

contain cpr ior (⟨5, 3⟩) leads to poorer performance.

Correct structure allows for efficient learning: Secondly, the data
unsurprisingly shows that the highest performing approach is the

‘known structure’, which is a direct result of the compactness of

the BNs in the belief. This shows that if you happen to know the

structure of the domain a-priori, then that allows the number of

unknown parameters to be as low as possible, leading to more

efficient learning.

Resampling BNs is crucial: Section 3.3 mentioned that traditional

methods of updating beliefs is not particularly effective when the

prior describes uncertainty over the topology. In particular, for this

problem it is important that the belief converges to a distribution

that places a high probability on graphs where the edge connecting

the location of the tiger to the observation feature. The ‘unknown

structure’ variant (in green) shows that the performance (of the

agent that only uses Importance Sampling in a factored setting)

declines after 75 episodes. This is because, on rare occasions, the

belief converges to a uniform (uninformative) observation model,

which discouraged the agent to listen, and resulted in a policy that

opened doors randomly (with an expected return of −45).

Factorization is important: Lastly we show that it is important to

utilize factorization when solving and learning in larger POMDPs.

The BA-POMDP (blue) is unable to learn in a problem as (arguably)

simple as the Tiger problem, when faced with a larger state space.

Our method, which combines a factored representation and struc-

ture resampling, is able to solve the problem in approximately 325

episodes, despite the number of unknown parameters.

5 CONCLUSION
This paper addresses the void of frameworks in the field of Bayesian

Reinforcement Learning intersecting factored models and partially

observable domains. Our approach describes the dynamics of the

POMDP in terms of graphical models, and maintains a joint belief

over the state, and both the CPTs and the structure simultaneously.

Alongside the framework we introduce a solution method, which

consists of an extension to the Monte-Carlo Tree Search method for

FBA-POMDPs: FBA-POMCP, in addition to Metropolis-Hastings be-

lief tracking algorithm. These methods were tested on the Factored

Tiger, an extension of the traditional Tiger problem that can scale

arbitrarily in size. The results show the significance of representing

and recognizing independent features, as FBA-POMDP agents are

able to learn in scenarios where the BA-POMDP is not feasible.

REFERENCES
[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[2] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-

rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.

IEEE Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.
[3] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. 2008. Monte-

Carlo Tree Search: A New Framework for Game AI.. In AIIDE.

[4] Nir Friedman and Daphne Koller. 2003. Being Bayesian about network structure.

A Bayesian approach to structure discovery in Bayesian networks. Machine
learning 50, 1-2 (2003), 95–125.

[5] David Heckerman, Dan Geiger, and David M Chickering. 1995. Learning Bayesian

networks: The combination of knowledge and statistical data. Machine learning
20, 3 (1995), 197–243.

[6] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. 1998. Plan-

ning and acting in partially observable stochastic domains. Artificial intelligence
101, 1 (1998), 99–134.

[7] Sammie Katt, Frans A Oliehoek, and Christopher Amato. 2017. Learning in

POMDPs with Monte Carlo Tree Search. In International Conference on Machine
Learning. 1819–1827.

[8] Stéphane Ross and Joelle Pineau. 2008. Model-based Bayesian reinforcement

learning in large structured domains. arXiv preprint arXiv:1206.3281 (2008).
[9] Stéphane Ross, Joelle Pineau, Brahim Chaib-draa, and Pierre Kreitmann. 2011.

A Bayesian approach for learning and planning in partially observable Markov

decision processes. The Journal of Machine Learning Research 12 (2011), 1729–

1770.

[10] Sebastian Thrun. 1999. Monte Carlo POMDPs. In NIPS, Vol. 12. 1064–1070.

6

	Abstract
	1 Introduction
	2 Background
	2.1 The POMDP & BA-POMDP
	2.2 Solving BA-POMDPs
	2.3 Bayes-Networks

	3 Bayesian RL in Factored POMDPs
	3.1 The Factored BA-POMDP
	3.2 Monte-Carlo Tree Search for FBA-POMDPs
	3.3 Structure rejuvenation

	4 Experiments
	4.1 Setup
	4.2 Analysis

	5 Conclusion
	References

