
Introspective Reinforcement Learning and Learning from
Demonstration

Mao Li

University of York

York, United Kingdom

ml1480@york.ac.uk

Tim Brys

Vrije Universiteit Brussel

Brussels, Belgium

timbrys@vub.ac.be

Daniel Kudenko

University of York

York, United Kingdom

National Research University Higher

School of Economics

St Petersburg, Russia

JetBrains Research

St Petersburg, Russia

daniel.kudenko@york.ac.uk

ABSTRACT
Reinforcement learning is a paradigm to model how an autonomous

agent learns to maximise its cumulative reward by interacting with

the environment. One challenge faced by reinforcement learning

agents is that in many environments the reward signal is sparse,

leading to slow improvement of the agent’s performance in early

learning episodes. Potential-based reward shaping can help to re-

solve the aforementioned issue of sparse reward by incorporating

an expert’s domain knowledge into the learning through a potential

function. Past work on reinforcement learning from demonstration

directly mapped (sub-optimal) human expert demonstration to a po-

tential function, which can speed up reinforcement learning. In this

paper we propose an introspective reinforcement learning agent

that significantly further speeds up the learning. An introspective

reinforcement learning agent records its state-action decisions and

experience during learning in a priority queue. Good quality de-

cisions, according to a Monte Carlo estimation, will be kept in

the queue, while poorer decisions will be rejected. The queue is

then used as demonstration to speed up reinforcement learning

via reward shaping. A human expert’s demonstration can be used

to initialise the priority queue before the learning process starts.

Experimental validation in the 4-dimensional CartPole domain and

the 27-dimensional Super Mario AI domain show that our approach

significantly outperforms non-introspective reinforcement learn-

ing and state-of-the-art approaches in reinforcement learning from

demonstration in both domains.

KEYWORDS
Q-learning, reinforcement learning, reward sharping, demonstra-

tions

1 INTRODUCTION
One of the main challenges Reinforcement Learning [19] faces is

dealing with the sparsity of rewards that is present in many tasks.

A reinforcement learning agent will only very slowly learn to solve

a task through trial-and-error if the feedback it receives in the

form of rewards is given sparsely. This lack of feedback, and thus

gradient, makes the agent explore the task uniformly at random,

unless special mechanisms are implemented that guide the agent’s

exploration.

One way of tackling this problem that is often taken is to include

prior (heuristic) knowledge that can bias the agent towards what

are a priori believed to be good states, or good behaviour. Prior

knowledge can come in the form of rules defined by a domain

expert [8], demonstrations provided by such an expert [13], prior

learning experiences of the agent in different tasks [20], etc.

Conversely, a second stream of thought, orthogonal to the for-

mer, tries to leverage internal knowledge and experiences in the

current task to generate internal rewards to bias exploration in

the absence of immediate external rewards. Approaches relying on

intrinsic motivation [2, 12] attempt to leverage the ideas of curiosity

and uncertainty to achieve more intelligent and effective ways of

exploration.

This paper falls in the second category, as we develop a technique

that allows the agent to bias its exploration by generating internal

shaping rewards based on its own successful previous experiences

in the task.

We evaluated our approach in the 4-dimensional CartPole do-

main and the 27-dimensional Super Mario AI domain, and the

results show significant improvements in learning performance

both when intrinsic RL is used on its own and when it is used in

combination with human expert advice.

2 BACKGROUND
In this section we introduce the background knowledge that under-

pins the work presented in this paper.

2.1 Reinforcement Learning
Reinforcement learning (RL) [19] is a paradigm that describes how

an agent can improve its behaviour based on reward and punish-

ment received from interactions with its environment. Maximising

the rewards accumulated over time equals solving the task by def-

inition. We define an RL problem as a Markov Decision Process

(MDP) ⟨S,A,T ,γ ,R⟩. S defines all environment states that can be

observed, and A defines the actions an agent can take to affect this

environment. T describes the dynamics of the system, defining the

probability of the environment transitioning from state s to state s ′,
given that action a was taken: T (s ′ |s,a). R is the reward function

that yields a numerical reward for every state transition, defining

the task. Finally, γ is called the discounting factor, and defines how

important long-term rewards are, i.e. how short- or far-sighted the

agent is.



The goal of an RL agent is to find behaviour, i.e. a policy π :

S → A that maximise the expected accumulation of rewards. Many

approaches do not directly search the policy space, but instead

estimate the quality of actions in each state, and derive a policy from

these estimates. The quality of states and actions is defined by the

Q-function:Q : S×A→ R. Temporal difference algorithms, such as

Q-learning [23], approximate the true Q-function by incrementally

updating their estimates:

Q(s,a) ← Q(s,a) + αδ

α is the learning rate, and δ is the temporal-difference error, the dif-

ference between the previous estimate and the target being tracked:

δ = R(s,a, s ′) + γ max

a′
Q(s ′,a′) −Q(s,a)

Q-learning is guaranteed to converge to the true Q-values, and
thus an optimal policy, given certain assumptions such as a decreas-

ing learning rate [22].

2.2 Reward Shaping
Vanilla versions of model-free RL algorithms typically require ex-

cessive amounts of interactions with the environment to learn high

quality policies, because they do not incorporate prior knowledge

to guide exploration. They must therefore rely on uniformly ran-

dom exploration of the state-action space in order to stumble on the

typically sparse rewards. Only after enough state transitions and

their associated rewards have been observed can the agent start

to exploit this knowledge by biasing its action selection towards

what its estimates indicate are good actions. Incorporating prior

knowledge to bias initial exploration is a successful way of reducing

learning time in reinforcement learning, the most notable recent

example being AlphaGO using expert demonstration data [15].

Reward shaping, derived from behavioural psychology, is a pop-

ular way of including prior knowledge in the learning process in

order to alleviate the random exploration problem. It provides a

learning agent with extra intermediate rewards, like a dog trainer

would reward a dog for completing part of a task. This extra reward

can enrich a sparse base reward signal (for example a signal that

only gives non-zero feedback when the agent reaches the goal),

providing the agent with useful gradient information. This shaping

reward F is added to the environment’s reward R to create a new

composite reward signal that the agent uses for learning:

RF (s,a, s
′) = R(s,a, s ′) + F (s,a, s ′)

Of course, since the reward function defines the task, modifying

the reward function may modify the total order over policies, and

make the agent converge to suboptimal policies (with respect to

the environment’s reward alone).

Following Ng et al. [10], we define a potential functionΦ : S → R
over the state space, and take the reward shaping function F as the

difference between the new and old states’ potential. Doing that

provably maintains the total order over policies, and preserves any

convergence guarantees [10]:

F (s,a, s ′) = γΦ(s ′) − Φ(s)

Prior knowledge can be numerically encoded in the potential

function Φ. The effect of applying such reward shaping, which is

typically denser than the sparse environment reward, is that the

agent is more likely to encounter non-zero rewards, and thus its

exploration will move away from uniform random much earlier in

learning. Instead, it will be biased towards states with high poten-

tials. For example, using height as a potential function in Mountain

Car [16] biases the agent to selecting actions that will increase

height. Since the goal location in Mountain Car lies on top of a hill,

shaping using this heuristic helps an agent solve that task faster.

The definition of F and Φ was extended by others ([5, 6, 24]) to

include actions and time-steps, allowing for the incorporation of

behavioural knowledge that reflects the quality of actions as well

as states, and allowing the shaping to change over time:

F (s,a, t , s ′,a′, t ′) = γΦ(s ′,a′, t ′) − Φ(s,a, t)

These extensions also preserve the total order over policies and

therefore do not change the task, given Ng’s original assumptions.

2.3 RL from demonstration
Reinforcement learning from demonstration is a term coined by

Schaal [13] to denote the intersection between the fields of rein-

forcement learning and learning from demonstration. As in RL,

an agent operating in a Learning from Demonstration (LfD) set-

ting looks for a policy π that allows it to execute a task [1]. While

in RL, the agent has a reward signal to evaluate behaviour, this

objective evaluation metric is not present in the LfD setting (sim-

ilarly for inverse reinforcement learning [11, 18]), and the agent

must refer to expert demonstrations (sequences of state-action pairs

{(s0,a0), . . . , (sn ,an )}) of the task to derive a policy that mimicks

and generalises these demonstrations. This constrains the LfD agent

to the behaviour the expert demonstrator exhibits (however good

or bad). On the other hand, LfD agents are typically much more

sample efficient than RL agents, requiring orders of magnitude

less demonstrator samples than an RL agent needs environment

interactions to learn good behaviour.

A Reinforcement Learning from Demonstration agent, possess-

ing both an objective reward signal and demonstrations, is able to

combine the best from both fields, leveraging demonstrations to

direct what would otherwise be uniform random exploration and

thus speed up learning, while leaving the theoretical guarantees

associated with reinforcement learning in place, as the objective

reward signal allows such an agent to eventually outperform a

potentially sub-optimal demonstrator.

Schaal [13] proposed two basic approaches to using demonstra-

tions in a reinforcement learning setting that were later developed

by other researchers. One is the generation of an initial value-

function for Q-learning by using the demonstrations as passive

learning experiences for the RL agent. This was later built upon

by Smart and Kaelbling [17]. The other approach derives an ini-

tial policy from the demonstrations and uses that to kickstart the

RL agent. This approach was picked up and further developed in

[4, 18, 21]. In this paper, we mainly build upon and compare with

the demonstration reward shaping work from [4].

In that work, demonstrations are encoded as a reward shaping

function by defining a Gaussian similarity measure over the state

space:

д(s, sd , Σ) = e

(
− 1

2
(s−sd )T Σ−1(s−sd )

)
(1)

2



and subsequently incorporating it in the potential function as

follows:

Φ(s,a) = max

(sd ,a)
д(s, sd , Σ) (2)

thus creating a Gaussian landscape that rewards the agent for

mimicking the demonstrator, but allows it to deviate from the

demonstrator’s example as well.

3 PRINCIPLES OF INTROSPECTIVE RL
This section will describe the methodology of using the agent’s

own experiences to shape the reward function in order to bias

exploration and speed up reinforcement learning. Typically, in com-

plex environments, rewards must be observed many times before

the agent acquires a significant behavioural bias towards pursu-

ing those rewards. In the Introspective Reinforcement Learning

approach we propose, we leverage these experiences to include

a more explicit bias, by shaping the reward function, rewarding

current behaviour that is similar to past behaviour that led to re-

wards. A different perspective on this is to say that those previous

experiences that led to rewards are task demonstrations (provided

by the agent itself), which can be used to bias the agent’s current

exploration in the same fashion as external expert demonstrations

would be used as described above in Section 2.3. If actual external

expert demonstrations are available, these could even be used to

initialised the introspective agent’s bias.

3.1 Collecting the experiences
Introspective Reinforcement Learning extends RL by adding an

experience filter module, and addresses the reward sparsity problem

using dynamic reward shaping based on the filtered experiences.

The experience filter collects the agent’s exploratory behaviour that

led to positive outcomes into a priority queue. These experiences

are then immediately used as an exploratory bias to speed up the

learning process.

Specifically, during a learning episode, every state-action-next

state-reward tuple ((st ,at , st+1, rt )) is stored in memory. At the end

of the episode, the Q-value q̂(st ,at ) for each state-action in this

episode is Monte Carlo estimated until the final time step T :

q̂(st ,at ) =
T∑
k=t

γk−t rt (3)

The state-action pairs and their estimated Q-values are then

stored in a priority queue with the estimated Q-values being the

sort key of the queue. If the queue is full (defined by queue size

parameter qs), only state-action pairs with a higher estimated Q-
value than the smallest in the queue are added (and the smallest

are consequently removed). If the queue is not full, all state-action

pairs and their estimated Q-value are added.
Progressively, poorer Q-value elements of the queue will be

removed, and experiences with higher estimated performance levels

will remain. Thus, the exploratory bias induced by these experiences

will progressively increase in quality.

Introspective RL is using prior experience to compute a reward

shaping function, rather than using it to replay past experience

directly [14]. As such, our approach is closer to the automatic

generation of a reward shaping function. Also, our approach does

not depend on using poor performing actions in the priority queue,

which is sorted by Q value (and not TD error as in prioritised

experience replay). Furthermore, dynamic reward shaping [5], as

applied to experience reuse in our approach, has been proven to

conserve the convergence guarantees of the RL algorithm used, in

our case Q(λ).

3.2 Defining the Potential Function
In the manner of [4], we encode state-action pairs as a potential

function using a Gaussian similarity metric.
1
The assumption is

that, if in the agent’s past experience, certain state-action pairs led

to high rewards, taking the same action in a similar state might

lead to similarly high rewards.

When the potential function Φ(s,a) needs to be calculated in

a certain state-action pair (s,a), first the agent must look in the

priority queue for the recorded state-action pair that is most similar

to the current, using Equation 1. Then the potential function is

defined as follows:

Φ(s,a) = ρ max

(sd ,a)
д(s, sd , Σ)q̂(sd ,a) (4)

which is a modification of Equation 2, incorporating the actual

estimated quality of that state-action pair q̂, and a scaling factor ρ
to control the strength of the exploratory bias induced.

Since the agent progressively collects more and more experi-

ences, in principle of higher and higher quality, the potential func-

tion will change from episode to episode, making this potential

function a dynamic one. Note that theoretical guarantees, i.e. that

the optimal policy does not change, hold for dynamic potential-

based advice [6], and that no modification to the policy needs to be

made given that the initial Q-function is all zeroes.

3.3 Initialising the Priority Queue with
Demonstrations of External Agents

Even though the introspective reinforcement learning idea is fo-

cused on using the agent’s own experiences to bias its learning, it is

also completely amenable to receiving an a priori-bias from demon-

strations provided by an external agent. Such demonstrations can

easily be incorporated by putting them through the same process of

estimating Q-values and storing them in the priority queue as the

experiences collected by the agent itself. When qualitatively good,

these demonstrations can prevent the agent from initially filling

the priority queue with whatever low-quality random trajectories

it executes first, allowing it to be positively guided from the first

episode.

Specifically, demonstration data from external agents will be

collected as a set of episodes, i.e. sequences of state-action pairs

that terminate in an end-state. Monte Carlo estimation of the Q-
value q̂ (si ,ai ) is performed, and the individual state-action pairs,

augmented with the estimatedQ-value are inserted into the priority

queue. If the demonstration data does not include the reward signal,

a viable solution may be to set the reward to 1 for all (sn ,an ). The

1
As opposed to the external expert demonstrations used in their work, we encode the

agent’s own filtered experiences in the potential function.

3



Reinforcement Learning from Demonstration work we base our-

selves on successfully deals with this problem in the same way [4].

3.4 Pulling it together
The pseudo-code in Algorithms 1 and 2 describe aQ-learning agent

employing the introspective technique to shape its exploration,

showing how all components interact on an algorithmic scale.

Algorithm 1 Introspective Q-Learning

Require: discount factor γ , learning rate α , queue size qs
1: procedure Introspective Q-Learning
2: initialise value-function Q to all 0.

3: initialise the priority queue PQ
4: (empty or with demonstrations)

5: for each step of episode do
6: st is initialised as the starting state

7: choose at in st using π derived from Q
8: SC = empty list ▷ SC collects all experience tuples

(s,a,s’,r) in an episode

9: repeat
10: perform action at
11: observe reward rt and new state st+1
12: choose at+1 in st+1 using π derived from Q
13:

Q(st ,at ) ←Q(st ,at ) + α(rt

+ F (st ,at , st+1,at+1)

+ γ max

b
Q(st+1,b)

−Q(st ,at ))

(5)

14: insert (st ,at , st+1, rt ) to SC ▷ Collect steps

15: st ← st+1
16: at ← at+1
17: until st is a terminal state

18: for each (st ,at , st+1, rt ) in SC do
19: for i in [0, 1, .., lenдth(SC) − t] do
20: q̂t ← q̂t + γ

irt+i
21: end for
22: Filter(< st ,at , q̂t >, PQ)
23: end for
24: end for
25: end procedure

4 EXPERIMENTAL VALIDATION
Two domains, CartPole and Super Mario, were selected to demon-

strate the strength of the proposed approach in this paper. Q(λ)-
learning and Reinforcement learning from Demonstration [4] were

used as benchmarks to be compared with the learning curve of the

proposed approach. In CartPole and Super Mario, ten and twenty

trial demonstrations from human experts were used respectively

to initialise the priority queue and shape the RLfD agent.

The results of all curves have passed a t-test, in which every 100

running results was averaged to be one sample and 30 samples were

involved in the test. The t-test was conducted every hundredth step

Algorithm 2 Filter High Q-value Experience

Require: queue size qs
1: procedure Filter(< st ,at , q̂t >, PQ)
2: if Size of PQ < qs then
3: Insert(PQ, < st ,at , q̂t >)
4: else
5: < se ,ae , q̂e >← the last element of PQ

6: if q̂t > q̂e then
7: Remove < se ,ae , q̂e > from PQ
8: Insert(PQ , < st ,at , q̂t >)
9: end if
10: end if
11: end procedure

Figure 1: CartPole learning curves of Q(λ)-learning and In-
trospective RL without any external demonstrations

for the samples. All the presented empirical results are statistically

different with p < 0.05.

4.1 CartPole
In the CartPole domain [9], the RL agent controls a cart with a pole

at its centre connected by a mechanical coupling. The RL agent

learns to keep the pole balanced by pushing the cart to the left or

the right. The observation consists of 4 features: the cart’s velocity,

its position, the angle of the pole, and its angular velocity.

In the experiments, Q(λ)-learning and reinforcement learning

from demonstration, abbreviated as RLfD, were used as the bench-

marks to be compared to introspective RL with and without demon-

strations, to show the advantages of introspection. We set all pa-

rameters following [4] with whose RLfD method we will compare:

learning rate α = 0.25
16

, discount rate γ = 1.0, λ = 0.25 and an

ϵ-greedy exploration strategy with ϵ = 0.05. Tile coding was used

as the function approximation with 16 10 × 10 tilings. Additionally,

the potential-function scaling parameter ρ = 0.2.

Figure 1 shows the results of comparing plain Q(λ)-learning with
introspective RL (without demonstrations). While both methods

converge to optimal behaviour, the results show that introspection

leads the agent to learn significantly faster than the regular Q(λ)-
learning agent. Since the λ parameter chosen in [4] and adopted

by us is quite low, we show experiments with two higher λ ∈

4



Figure 2: CartPole learning curves of Q(λ)-learning, and In-
trospective RL for λ ∈ {0.25, 0.4, , 0.5, 0.8}.

Figure 3: CartPole learning curves of Q(λ)-learning, Rein-
forcement learning from Demonstration, and Introspective
RL with demonstrations

{0.4, 0.8} in Figure 2. For higher λ, convergence for both methods

is significantly faster, but the introspection advantage remains.

In Figure 3, we show the effect of external demonstrations on the

learning processes. We compare the baselineQ(λ)-learning without
demonstrations, with the RLfD approach provided with 10 differ-

ent demonstrations, and our Introspective Q(λ) agent using the

same 10 demonstrations to seed the experience queue. The external

demonstrations have sub-optimal performance between 450 to 700

steps of keeping the pole up. The results show that while leveraging

demonstrations can help, giving RLfD a jumpstart compared to the

vanilla Q(λ)-learner and the introspective agent, the introspective

agent very quickly outperforms both other agents. Since the use of

demonstrations and the introspective mechanism are orthogonal

to each other, we see here that they can be combined to provide a

more powerful learner. Furthermore, the introspective mechanism

will replace the potentially sub-optimal external demonstrations’

exploratory bias as the agent discovers better trajectories by itself.

In the static RLfD case, the suboptimal bias remain throughout the

learning process. Even though theoretical guarantees for conver-

gence apply to both the dynamic introspective case as the static

RLfD case, it is clearly better to dynamically change the bias to

include higher and higher quality experiences.

4.2 Super Mario AI competition benchmark
Super Mario Bros is a famous 2-D side-scrolling video game first

released by Nintendo in 1985. [7] converted this game into an AI

algorithm competition benchmark. The goal of the game is for

the agent to maximise its points. Points are earned for collecting

coins, killing enemies, and finishing a game level, while points are

subtracted for getting hurt and dying. The game ends when the

agent is killed by an enemy, drops from a cliff, runs out of time,

or finishes the level. The RL agent’s reward corresponds to the

points collected in the Super Mario game (e.g. for collecting coins

or killing enemies) and to a large extent on being able to complete

the level. Negative rewards are given for getting hurt by enemies

or falling off a cliff.

The actions available to the Mario agent correspond to the but-

tons on the original game controller, which are (left, right, no direc-

tion), (jump, don’t jump), and (run/fire, don’t run/fire). One action

from each of these groups can be taken simultaneously, resulting

in 12 distinct combined actions. We use the same state-space as

described in [3], which involves 27 discrete state features:

1 is Mario able to jump? (Boolean)

2 is Mario on the ground? (Boolean)

3 is Mario able to shoot fireballs? (Boolean)

4-5 Mario’s direction in the horizontal and vertical planes

({−1, 0, 1})

6-9 is there an obstacle in one of the four vertical grid cells in

front of Mario? (Boolean)

10-17 is there an enemy within one grid cell removed from

Mario in one of eight different directions (left, up-left, up,

up-right, etc.) (Boolean)

18-25 as the previous, but for enemies within two to three grid

cells. (Boolean)

26-27 the relative horizontal and vertical positions of the clos-

est enemy ((−10, 10), measured in grid cells, plus one value

indicating an absence of enemies)

Similar to the CartPole domain, we used Q(λ)-learning and RLfD
as benchmarks. The parameters were taken from [3], with the learn-

ing rate α = 0.001, discount factor γ = 0.9, ϵ-greedy exploration

with ϵ = 0.05 , λ = 0.5 with the additional σ = 0.5 for RLfD.

Figure 5 shows the learning curves of Q(λ)-learning and the

introspective reinforcement learning agent without demonstrations

in the Super Mario domain. We show results for two different values

of the potential function scaling factor ρ. The results are similar

to the CartPole domain in that the learning performance of the

introspective reinforcement learning agent without demonstrations

significantly improves over that of Q(λ)-learning, and reaches the

asymptotic performance level earlier.

In another set of experiments, shown in Figure 6, 20 demonstra-

tion episodes from a human player (all with a performance score

between 400 to 650) are used to initialise the priority queue for

introspective RL. The results show that also in this highly complex

5



Figure 4: A Super Mario screen shot

Figure 5: Super Mario Domain learning curves of Q(λ)-
learning, and Introspective RL without demonstration

Figure 6: Super Mario Domain learning curves of Q(λ)-
learning, RLfD, and Introspective RL with demonstration

domain, introspective RL with demonstrations outperforms both

RLfD and regular Q(λ)-learning.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented the idea of introspective reinforcement

learning which takes inspiration from learning by demonstration.

However, instead of using external expert demonstration to guide

the learning, the reinforcement learning agent uses its own expe-

riences that have produced high rewards in the past. The agent

keeps a priority queue to record the most successful experiences as

tuples of the form ⟨s,a, q̂⟩, where the Q value is obtained by Monte

Carlo estimation. When the agent executes an action that is the

same as the action of the most similar state in the priority queue, a

reward based on the product of ρ, q̂, and the degree of similarity is

added, where ρ is the hyper parameter that controls the weight of

the reward shaping signal. Human experts’ demonstrations can be

used by injecting the corresponding state-action-q triples into the

priority queue. In this way, introspective RL can be complementary

to reinforcement learning from demonstration.

We empirically evaluated our introspective RL approach on two

domains, namely the CartPole domain with 4 continuous features

and the Super Mario domain with 27 discrete features. The results

showed that the introspective reinforcement learning agent sur-

passes regularQ(λ)-learning performance significantly and reaches

the asymptotic performance much earlier. Furthermore, introspec-

tive reinforcement learning with demonstrations significantly im-

proves performance in both domains compared to state-of-the-art

reinforcement learning from demonstration. The empirical results

also show that while introspective RL can use up more compu-

tational time per learning step, this loss is counterbalanced by a

reduced sample complexity, which is generally more critical than

computational complexity.

In future work, we intend to apply introspective RL to deep Q

learning. For example, the similarity of parameters in high layers

of the Q-value neural network may be considered to represent

the similarity of state in a high-level concept and could be used

for reward shaping. Another promising area of investigation is

the optimisation of the balance between the extra reward signals

and the real rewards from the environment. A more sophisticated

control of the parameter ρ (e.g. decay over time) could help to

improve the learning performance.

REFERENCES
[1] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A

survey of robot learning from demonstration. Robotics and autonomous systems
57, 5 (2009), 469–483.

[2] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-

ton, and Remi Munos. 2016. Unifying count-based exploration and intrinsic

motivation. In Advances in Neural Information Processing Systems. 1471–1479.
[3] Tim Brys. 2016. Reinforcement Learning with Heuristic Information. Ph.D. Disser-

tation. Vrije Universiteit Brussel.

[4] Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E

Taylor, and Ann Nowé. 2015. Reinforcement Learning from Demonstration

through Shaping.. In IJCAI. 3352–3358.
[5] Sam Devlin and Daniel Kudenko. 2012. Dynamic potential-based reward shaping.

In Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems-Volume 1. International Foundation for Autonomous Agents

and Multiagent Systems, 433–440.

[6] Anna Harutyunyan, Sam Devlin, Peter Vrancx, and Ann Nowé. 2015. Expressing

arbitrary reward functions as potential-based advice. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence.

[7] Sergey Karakovskiy and Julian Togelius. 2012. The mario ai benchmark and

competitions. IEEE Transactions on Computational Intelligence and AI in Games 4,
1 (2012), 55–67.

6



[8] Maja J Mataric. 1994. Reward functions for accelerated learning. In Machine
Learning: Proceedings of the Eleventh international conference. 181–189.

[9] Donald Michie and Roger A Chambers. 1968. BOXES: An experiment in adaptive

control. Machine intelligence 2, 2 (1968), 137–152.
[10] Andrew Y. Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under

reward transformations: Theory and application to reward shaping. In Proceedings
of the Sixteenth International Conference on Machine Learning, Vol. 99. 278–287.

[11] Andrew Y Ng, Stuart J Russell, et al. 2000. Algorithms for inverse reinforcement

learning.. In Icml. 663–670.
[12] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. 2017.

Curiosity-driven exploration by self-supervised prediction. arXiv preprint
arXiv:1705.05363 (2017).

[13] Stefan Schaal. 1997. Learning from demonstration. Advances in neural information
processing systems 9 (1997), 1040–1046.

[14] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized

experience replay. arXiv preprint arXiv:1511.05952 (2015).
[15] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. Nature 529, 7587 (2016), 484–489.
[16] Satinder P. Singh and Richard S. Sutton. 1996. Reinforcement learning with

replacing eligibility traces. Machine learning 22, 1-3 (1996), 123–158.

[17] William D. Smart and Leslie Pack Kaelbling. 2002. Effective reinforcement learn-

ing for mobile robots. In IEEE International Conference on Robotics and Automation,
Vol. 4. IEEE, 3404–3410.

[18] Halit Bener Suay, Tim Brys, Matthew E Taylor, and Sonia Chernova. 2016. Learn-

ing from demonstration for shaping through inverse reinforcement learning. In

Proceedings of the 2016 International Conference on Autonomous Agents & Multia-
gent Systems. International Foundation for Autonomous Agents and Multiagent

Systems, 429–437.

[19] R.S. Sutton and A.G. Barto. 1998. Reinforcement learning: An introduction. Vol. 1.
Cambridge Univ Press.

[20] Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement

learning domains: A survey. Journal of Machine Learning Research 10, Jul (2009),

1633–1685.

[21] Matthew E Taylor, Halit Bener Suay, and Sonia Chernova. 2011. Integrating

reinforcement learning with human demonstrations of varying ability. In The
10th International Conference on Autonomous Agents and Multiagent Systems-
Volume 2. International Foundation for Autonomous Agents and Multiagent

Systems, 617–624.

[22] John N. Tsitsiklis. 1994. Asynchronous stochastic approximation and Q-learning.

Machine Learning 16, 3 (1994), 185–202.

[23] Christopher John Cornish Hellaby Watkins. 1989. Learning from delayed rewards.
Ph.D. Dissertation. University of Cambridge.

[24] Eric Wiewiora, Garrison Cottrell, and Charles Elkan. 2003. Principled methods

for advising reinforcement learning agents. In ICML. 792–799.

7


	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Reinforcement Learning
	2.2 Reward Shaping
	2.3 RL from demonstration

	3 PRINCIPLES OF INTROSPECTIVE RL
	3.1 Collecting the experiences
	3.2 Defining the Potential Function
	3.3 Initialising the Priority Queue with Demonstrations of External Agents
	3.4 Pulling it together

	4 EXPERIMENTAL VALIDATION
	4.1 CartPole
	4.2 Super Mario AI competition benchmark

	5 CONCLUSION AND FUTURE WORK
	References

