Policy Progress Score for Automatic Task Selection in
Curriculum Learning

Golden Rockefeller
Oregon State University

Scott Chow
Oregon State University

rockefeg@oregonstate.edu chows@oregonstate.edu

Yathartha Tuladhar
Oregon State University

Kagan Tumer
Oregon State University

tuladhay@oregonstate.edu kagan.tumer@oregonstate.edu

ABSTRACT

This paper introduces policy progress scores as a principled
means of selecting intermediate tasks that enable effective
transfer learning. For some complex tasks, rewards can be
sparse, delayed, noisy and/or uninformative, making it dif-
ficult to find good policies. For such tasks, a sequence of
related tasks, i.e. curriculum, can be designed to enable and
speed up learning by transferring knowledge between suc-
cessive tasks in the curriculum. However, how to develop an
effective curriculum, particularly without in depth domain
knowledge, is a challenging problem.

In this paper, we present an automatic curriculum gener-
ation process that scores tasks on the anticipated change in
policy parameters. This "policy progress” score is defined as
the weighted sum of absolute expected change in a policy
parameters. We apply the automated curriculum genera-
tion process using progress score to both single agent and
multiagent Grid World domains. Our results on a complex
multiagent Grid World domain show policy progress scores
create similar curricula as the current state-of-the-art with
reduced computation.

Keywords

Curriculum Learning, Learning Progress, Policy Progress,
Transfer Learning, Task Selection

1. INTRODUCTION

Reinforcement learning has been used to train agents for
a variety of applications including helicopter control [12],
chess [8], and robotic arm control [5]. However, reinforce-
ment learning is difficult for complex domains where rewards
are sparse, rare, and/or have high variance [1, 6, 14]. These
factors, often present in real-world problems, cause the re-
ward to be non-informative.

To learn on complex domains, transfer learning methods
have been proposed that allow agents trained on related
tasks to transfer knowledge to a target task in order to im-

prove the quality of learning on the target task [16]. This
idea has been extended by Curriculum learning (CL) which
transfers knowledge successively between a series of tasks,
i.e. a curriculum, to speed up learning and/or increase con-
verged performance for a target task [10]. Automatic cur-
riculum generation methods aim to generate a curriculum
online that is adaptive to the agent’s current knowledge.

A key problem of automatic curriculum generation is task
selection. For an automatic curriculum generation process
(ACGP), task selection is the problem of choosing which in-
termediate tasks to train on in order to maximize the antici-
pated change in performance [9]. This anticipated change in
performance is defined as the performance progress. In prac-
tice, performance progress is often estimated via an iterative
update rule because it cannot be computed directly. How-
ever, the high variance and sparsity of rewards in these tasks
makes it difficult to estimate performance progress. When
performance progress estimation is inaccurate, ACGP is less
effective at selecting good tasks for training.

Additionally, ACGP with performance progress scores is
inefficient, since computing the performance progress score
requires the program to run one training episode on the in-
termediate task and one evaluation episode on the target
task. Performance progress’ susceptibility to high variance
and requirement of two episodes to compute makes it less
feasible for real world problems [9].

The key contribution of this paper is to use policy progress
as a proxy for performance progress to choose tasks for cur-
riculum learning. Policy progress chooses intermediate tasks
that maximize cumulative change in policy parameters. The
benefits of policy progress is two-fold. First, the variance
in policy progress comes from the intermediate task, not
the main task. So even if the main task’s reward has vari-
ance and sparse rewards, policy progress can be accurately
computed as long as intermediate tasks have informative re-
wards. Secondly, policy progress can be computed with only
a single training episode on the intermediate tasks, making
it more computationally efficient than performance progress.

We organize the paper as follows. First we give back-
ground on transfer and curriculum learning as well as per-
formance progress score in Section 2. Then we present a
method for calculating policy progress in Section 3. Next,
we describe the Grid World domain and the tasks used to
test our approach in Sections 4 and 5. Finally, we present
results and discuss their implications in Sections 6 and 7.

2. BACKGROUND

In this section, we describe transfer learning in the con-
text of curriculum learning, automatic curriculum genera-
tion, and the performance progress score.

2.1 Transfer Learning

Transfer learning (TL) is the process of transferring knowl-
edge from a source task to a separate target task to improve
the quality of learning on the target task [16]. A param-
eterized labeling function is first trained on a source task.
Knowledge is transfered when the labeling function after
training on the source task is adapted for training on the
target task. In context of model-free reinforcement learning,
the agent’s policy and/or evaluating @ function are trans-
fered labeling functions.

2.2 Curriculum Learning

Curriculum Learning (CL) is a more specific form of Trans-
fer Learning that aims to improve the quality of learning on
a target task by creating a sequence of tasks (i.e. curricu-
lum) on which the agent trains. Knowledge in the form of
learned parameters is transfered between tasks. The appli-
cation of CL involves progressively increasing the difficulty
of the intermediate tasks, incrementally building scaffolding
for an agent to accelerate the agent’s training on the tar-
get task [10]. CL can be used to speed up learning on the
target task by leveraging the information learned through
these intermediate tasks.

2.3 Automatic Curriculum Generation

The automatic curriculum generation process creates a
curriculum on-line that is adaptive to the agent’s current
knowledge through a principled selection of the task an agent
should learn on for the next episode. A similar idea is present
in active learning [2, 3] and self-paced learning [7] but sam-
ple data is selected for training instead of tasks. The au-
tomated curriculum generation process tackles the problem
of selecting intermediate tasks in a way that maximizes a
user-defined progress score. This problem is formulated as a
curriculum Markov Decision Process (MDP), an extension
to the MDP formulation [11]. The learning agent’s policy
space defines the MDP’s state space. The task selection
space defines the action space. The transition function de-
scribes how the policy might change given a task on which
to train. The reward function is chosen so that the entire
processes minimizes the time needed to reach a policy with
an acceptable evaluation on the target task.

Practically, the anticipated progress for an intermediate
task must be estimated from previous sampled measures of
progress. In active and self-paced learning, progress can be
defined as a reduction in the labeling function’s variance
[3], or reduction in a loss function [15, 7] which are both
inexpensive to calculate relative to training time. However,
with reinforcement learning, such definitions of progress may
not apply, and other progress definitions like the increase in
performance is costly to calculate exactly. Thus, an auto-
mated curriculum generation may maintain a set of progress
estimates Py = (Px,0, ..., Ps,m) for a finite set of m curricu-
lum tasks T = {7o, ..., Tm} [9]. The progress estimates are
kept for all tasks and updated iteratively as the agent learns.
Other automated curriculum generation processes exist such
as recursively breaking down a task into easy to learn sub-
tasks and fully training on each task before moving on to

harder tasks [11].

Maximizing cumulative progress requires a selection strat-
egy that manages the exploration-exploitation trade-off. The
algorithm must choose between the task estimated to have
the highest progress score, and some other task to update
the estimate of the selected task’s actual progress score. The
task that maximizes anticipated progress for the next step
may change as there becomes less for an agent to learn from
previously selected tasks. Thus, automatic curriculum gen-
eration is modeled as a non-stationary multi-armed bandit
problem [4] where the tasks represents the arms and progress
scores represent the payoff.

A formulation of basic on-line automatic curriculum gen-
eration with progress scores is presented in Algorithm 1.
First, the algorithm calls a SELECT function which de-
scribes a selection strategy for choosing intermediate task
to train on for the next episode. e-greedy is an example
selection strategy that probabilistically selects either the
task with the highest progress score or randomly chooses
a task with some user-prescribed probability €. After train-
ing, an EVALUATE_PROGRESS function is called to up-
date progress scores for the selected task. Our contribution
is a new method to compute these progress scores.

Algorithm 1 Automated Curriculum Generation Algo-
rithm

Initialize P.

while Training not completed do
Task Index i < SELECT (T, Py, *)
m < TRAIN(T;, ,*)
P.; + EVALUATE_PROGRESS(x)

end while

2.4 Performance Progress

Performance progress scores have been introduced in pre-
vious works [2, 13] as a method to select tasks for a cur-
riculum. Performance progress is defined by how much the
expectation of the agent’s performance changes after learn-
ing for one episode on a given task, that is:

Pr(T) :=E[R — R|T, 7] (1)

where Pr(7) is the anticipated performance progress for
training on some intermediate task 7, R’ is the performance
measure on the target task to be received after the current
training episode, R is the performance measure on the target
task received before the current training episode, and = is
the agent’s policy before the start of the current training
episode.

Practically, performance progress is approximated since
computing the expectation of the agent’s change in perfor-
mance is not always viable. One estimation of performance
progress is to iteratively update an estimate at the end of
each learning episode using performance measures [9]

Pr(T) + (1 —a)Pr(T) + a(R — R) (2)

where « is the learning rate (0 < a < 1). Ideally, the
performance progress estimate converges to the actual per-
formance progress.

There are a couple of drawbacks to using performance
progress scores. First, it is susceptible to the high variance
of the target task’s reward. Additionally, updating the es-
timate of performance progress with Equation (2) requires

two episodes: one episode for training on the intermediate
task and another episode for evaluation on the target task.
In our paper, we propose policy progress scores as an al-
ternative to performance progress scores in order to address
these issues.

3. POLICY PROGRESS

High variance rewards can make performance progress
estimates for automatic curriculum generation inaccurate
and/or inefficient to calculate. Multiple episodes are re-
quired for each update of the performance progress estimate
which takes time that could be used training directly on the
target task. Thus, the automatic curriculum generation al-
gorithm could counter-productively slow learning when the
process of estimating performance progress increases com-
putation costs beyond the learning speed up the curricu-
lum can provide. Training can occur during an evaluation
episode to make the automatic curriculum generation algo-
rithm more efficient. However, this training introduces its
own progress, making the performance progress estimate for
just the evaluated intermediate task less accurate.

Policy progress scores are introduced as a principled means
of selecting intermediate tasks to learn on so that transfer
learning is sped up for a target task. A curriculum can be
generated by choosing tasks in a particular sequence to max-
imize cumulative change in policy parameters, i.e. policy
progress, as a progress score instead of performance progress.
Ideally, policy progress scores should be used for task selec-
tion when policy progress is strongly correlated with per-
formance progress and the former have less variance. It
is reasonable to assume this correlation with tasks similar
enough to the target task; learning algorithms manipulate
the parameters in order to increase performance. Maximiz-
ing policy progress can address aforementioned difficulties
with maximizing performance progress when there is ad-
equately less uncertainty in the measure of policy progress

compared to performance progress. Additionally, policy progress

is a more efficient option as it can be measured without eval-
uation on the target task unlike performance progress.

The goal of learning algorithms is to make iterative change
to an agent’s policy to maximize performance; on average,
each change should increase an agent’s performance in the
task being trained. More specifically, learning algorithms
manipulate a parameter vector §. Choosing an intermediate
task with more change in policy parameters over time as
the next part of the curriculum can lead to a faster rate
of performance increase. Policy progress is thus defined as
the weighted sum of absolute expected change in a policy’s
parameters. Policy progress must use a weighting factor for
each parameter to take into account the relative variation in
the impact and scaling of the parameter:

N

P(T) = > wi[E[(0} — 00)|T 7] (3)

k

where P.(7) is anticipated policy progress for training on
task 7, N is the number of parameters that determines the
agent’s policy 7, wg is the importance weighting for a given
parameter, 65, and 0}, are the values for a given parameter
before and after the current training episode, respectively.

An estimate of the expected change Dy (T) is iteratively
updated over time for each parameter 60y, :

Di(T) + (1 — a)D(T) + (0 — 63) (4)

where « is the learning rate. Like with the performance
progress update (Equation (2)), the policy progress update
is performed once per training episode. The policy progress
estimate use Dy (T) as the estimation of expected change in
parameter term E[(0}, — 0)|T, 7] presented Equation (3):

Pr(T) =) wilDu(T)] ()
k

Policy progress measures how much a chosen intermedi-
ate task pushes the parameters along regardless of whether
doing so actually increases performance. Therefore, candi-
date tasks for selection should be carefully constructed such
that, given the automatic curriculum generation algorithm,
the average change for parameters over time will lead to an
improvement in performance in the target task. Using pol-
icy progress for evaluating tasks is not recommended unless
intermediate tasks often have positive performance progress.

Promising initializations [10] are potentially good candi-
dates for intermediate tasks that place agents near goal ar-
eas to reduce the sparsity of the reward. Deviation to the
optimal policy for the target task when training the op-
timal policy on an intermediate task is to be avoided as
these deviations are counter-factually measured as positive
policy progress according to formulation of policy progress.
Promising initializations intermediate tasks avoid such devi-
ations from the optimal policy for the target task that policy
is also optimal for the promising initializations tasks.

4. GRID WORLD DOMAIN

The Grid World domain consists of an n by m grid with
an agent in the grid world trying to reach a goal cell at some
row g, and some column g., with a reward of 4 rewarded to
the agent for reaching the grid world and a timing reward
(or cost) r¢ rewarded to the agent for each time step the
agent is in the grid world. The performance of the agent is
the sum of all the rewards during the run. Each episode ends
either after T' time steps has passed or when the agent has
reached the goal. Upon initialization, the agent is randomly
placed in the grid world on any cell except the goal cell.
Each step, the agent may move in the cardinal directions or
stay in place, but they can not leave the boundaries of the
grid world.

4.1 Multiagent Grid World

The multiagent extension to the Grid World domain makes
for a good example of a complex domain with sparse re-
wards. In the multiagent case, we initialize N decentralized
agents in the same worlds as described for the single agent
Grid World Domain. Agents’ actions are the same as in
the single agent domain and multiple agents can occupy the
same cell. A coupling requirement exist such that the goal
reward is only received when a minimum number of agents
are at the goal cell at the same time. A coupling require-
ment value c is the number of agents required to the receive
the goal reward. This version of Grid World is difficult as
agents do not know where are agents are and yet, they must
coordinate the actions in order for the system to perform
well. The episode ends either after T' time steps have passed
or when the coupling requirement is achieved.

Individualized rewards for agents may be shaped by the
learning process for more effective training. The multia-
gent system’s performance, or global reward, does not isolate

their contribution to the system, negatively impacting how
well they learn due to poor credit assignment. Agents may
instead receive the difference reward [17] which estimates
the contribution of the agent as the difference in perfor-
mance between the multiagent system current performance
and the system’s performance should that agent not exist or
reach some counterfactual state-action. However, the multi-
agent system’s performance as opposed to individual agent
rewards must still be used in calculating progress.
The equation for the difference reward is

Di(2) = G(z) — G(2-i) (6)

where D; is the the difference reward for an evaluated agent
1 given the full environment state z (not the agent state),
G is the global reward and z_; the counterfactual full envi-
ronment state, replacing the state-action of ¢ with a coun-
terfactual state-action.

As the decentralized multiagent system implies multiple
policies, the policy progress score is calculated for each agent
i as Pr; and the progress score P is used for task selection
as the sum of each agent’s progress score:

N
pn = Zpﬂ—,i (7)

5. EXPERIMENT SETUP

This paper compares averaged performance trajectories
on the target task between using difference curriculum strate-
gies. The curriculum strategies compared are 1) no curricu-
lum, training on the target task, 2) no curriculum, training
on the same non-target task for all learning episodes; two
non-target tasks are compared 3) ACGP with random task
selection 4) ACGP with an e-greedy task selection process
with performance progress scores and 5) ACGP with an e-
greedy task selection process with policy progress scores.
All parameter weights are set to 1, when calculating policy
progress scores. The ACGP selects from a set of five tasks,
the target task and four intermediate tasks. The tasks for
both the multiagent and single agent domains are defined
by the goal cell and initialization cells locations illustrated
by Figure 1 with the target task illustrated by (a) and the
intermediate tasks illustrated (b-e).

5.1 Target Task

The target task defines a Grid World domain with the
dimensions n = m = 10. The goal is located at g = 5,g. =
5. The starting location of the agent is randomly determined
with an equal probability for every cell except the goal cell.
There is no timing reward r: = 0 and the goal reward is
set to 7y = 1. Each episode lasts T' = 10 steps. In the
single agent case, learning happens over 2000 episodes. In
the multiagent case, the coupling requirement is ¢ = 3 with
N = 6 agents and learning happens over 20000 episodes.

5.2 Intermediate Tasks

Four intermediate tasks are generated from the target task
by restricting where agents can be initialized. The four tasks
are described by initialization rings that progressively get
closer to the goal cell. These tasks are provided as inter-
mediate tasks in the spirit of Promising Initializations [10].
The nearest Figure 1(c) and farthest Figure 1(b) rings are
used as sample non-target tasks for the no-curriculum, non-
target curriculum strategy. In the multiagent case, the same

PP PP
e 2 =
e = —
oo ee = =
Zéé%ﬁ%é%éé E || Z
gegeeezz22 2 2
ez 2 Z
B eZZZZ2 2 2
B2 ZZZ2Z2 2 2
EEEEEEEEEE EEEEEEEEZZ

—_
Q
-~
—_
(=)}
-

e =
—— =z
I~ I I~
ZeZ2 - ~
= [~
/ /
= = = =
?/// % =
P P P —]
= =
C— [~ =
i v e e
(c) (d)

Jl GoalcCell
ez Initialization Cell
| -
~— ~—
= . =
— —

5 =
?/ //%

C— I~
o o s o

(e)

Figure 1: Ilustration of five different Grid World tasks (a-
e). At the start of a given task, agent(s) are initiated ran-
domly with uniform probability in any of initialization cells
(striped cells). Agent(s) must then navigate to the goal cell
(dark cell) to receive a high reward and end the episode.
As an example, the task illustrated by (c) initializes agents
very close to the goal making the probability of the agents
reaching the goal high compared to a task that initializes
agents farther away like with the task illustrated by (b).

initialization restriction applies to all agents, i.e. agents are
not initialized in different rings.

5.3 Learning Policies

Agents’ policies are Q tables mapping state-action pairs
to a reward for both the single and multiagent domains).
The policies are update each time step using the tabular
Q-learning algorithm:

Q(s,a) + (1 — @)Q(s,a) + a(r + ymaz Q(s',a’)) (8)

for state s, next state s’, action a, next action a’ and reward
r. The learning rate is set to @ = 0.1. The discount factor is
set to v = 0.9. The Q table is optimistically initialized to 1.0
to encourage exploration with small tie-breaking noise from
a uniform distribution between 0 and 0.1. Agents chose the

action that yield the maximum Q value given a state but
when learning, they follow e-greedy strategy with e = 0.1.

In the multiagent agent case, evaluations for the compared
curriculum strategies were generated both for when agents
received the global reward, and when agents received the
difference reward. In the target domain, evaluating the dif-
ference reward, agents receive a rewards of r = 1 when they
reach the goal and the number of agents that reach the goal
at the same time is exactly equal to the coupling require-
ment; otherwise, agents receive a rewards of r = 0.

5.4 ACGP Task Selection Strategy

The evaluated ACGP strategies apply e-greedy with € =
0.1. The initial performance progress estimate is optimisti-
cally set to PR(T) = 0.1 for all tasks to encourage explo-
ration of which task to choose. The initial change in pa-
rameter estimate is optimistically set to Dy (7)) = 0.1 for all
parameters and for all tasks also to encourage exploration.
All the data presented were averaged over a hundred statis-
tical runs. Mean and confidence intervals are presented.

6. RESULTS

The learning curves for evaluated curriculum strategies
for the single agent Grid World domain are presented in
Figure 2. Training on only the nearest ring initialization
task creates the fastest learning curve, converging before 500
training episodes. Training on only the farthest ring initial-
ization task leads to the slowest learning curve. Training
with ACGP using performance progress scores leads to the
second fastest learning curve. All other curriculum strate-
gies have similar learning curves. All curriculum strategies
converge to a performance of 1.0 before episode 1500.

1.04

0.8

0.6

0.4

s
,' / —— Target Task Training Only
: ACGP with Policy Progress Score

Average Cumulative Reward (Performance) per Epsidoe

0.2 1 A / ¥+ ACGP with Performance Progress Score
* / —#- ACGP with Random Selection
2 /*’ —8— Nearest Ring Training Only
0.0 4 - - —~¥- Farthest Ring Training Only
T T T T T T T
o 250 500 750 1000 1250 1500 1750

Training Episodes Elapsed

Figure 2: Average learning curves for different curriculum
strategies in 10 x 10 single agent Grid World Domain.
For a simple single agent domain, training using automatic
curriculum generation processes (ACGPs) yields no benefits
over training directly on the target task.

The learning curves for evaluated curriculum strategies
for the multiagent Grid World domain with agents training
on the difference reward are presented in Figure 3a. Train-
ing on only the farthest ring initialization task creates the
fastest learning curve converging to a performance of 1.0
within 15000 training episodes. Training between only the

nearest ring initialization task and only the target task leads
to the slowest learning curve, neither converging within the
alloted 20000 training episodes. All other curriculum strate-
gies share similar learning curves, converging to a perfor-
mance of 1.0 within 15000 training episodes.

All curriculum strategies do not converge with the alloted
20,000 training episodes. The learning curves for evaluated
curriculum strategies for the multiagent Grid World domain
with agents training on the global reward are presented in
Figure 3b. Training between only the nearest ring initial-
ization task and only the target task leads to the slowest
learning curve. All other curriculum strategies have similar
learning curves before 12500 training episodes, reaching a
performance near 1.0 that decays afterwards with the learn-
ing curve of the ACGP using performance progress scores
decaying faster at this point.

6.1 Task Selection Rate

Average task selection rate for the automated curriculum
generation process using policy progress scores in the multi-
agent Grid World domain with agents training on the differ-
ence rewards are presented in Figure 4a. A strong preference
for selecting nearer initialization tasks can be seen after 7500
training episodes. After this point, the strongest preferences
for task selection is the nearest ring initialization task peak-
ing at about 50 percent selection rate between 12500 and
15000 training episodes.

We compare this to the average task selection rate for
the automated curriculum generation process using perfor-
mance progress scores in the multiagent Grid World domain
with agents training on the difference rewards are presented
in Figure 4b. We, again, see a strong preference for se-
lecting nearer initializations can be seen after 7500 training
episodes. After this point, the strongest preference for task
selection is also the nearest ring initialization task, which
peaks at about 60 percent selection rate at 12500 episodes.

We see in Figure 4 that creating curricula using our pol-
icy progress and performance progress gives similar curricula
for the multiagent Grid World task. Additionally, in all do-
mains tested, the ACGP performs similarly when using pol-
icy progress scores as it performs when using performance
progress scores (Figures 2 and 3). Also, recall that perfor-
mance progress requires an extra episode of training on the
target task to compute. Thus policy progress approximates
performance progress with less computation.

7. CONCLUSION

Learning policies for tasks using reinforcement learning is
difficult for domains where rewards are sparse, rare, and/or
have high variance. For such domains, learning strategies
may apply a curriculum to speed up learning on the tar-
get task. Automatic curriculum generation methods aim to
generate a curriculum on-line that is adaptive to the agent’s
current knowledge. However, task selection is a key problem
to address with automatic curriculum generation.

This paper uses policy progress scores as a principled
means of selecting intermediate tasks to learn on so that
curriculum learning is sped up for a target task. The vari-
ance of the policy progress score is dependent on the task
updating the policy, the intermediate task, and not the tar-
get task. Thus, a good selection of the intermediate tasks
will minimize policy progress variance, allowing for a clearer
comparison between the tasks.

=
)

—- Target Task Training Only
~# - ACGP with Policy Progress Score

% ACGP with Performance Progress Score
—&- ACGP with Random Selection

—8— Nearest Ring Training Only
~¥- Farthest Ring Training Only

1.0 —#- Target Task Training Only
—#- ACGP with Policy Progress Score

+3 ACGP with Performance Progress Score
—#- ACGP with Random Selection

— Nearest Ring Training Only
-¥- Farthest Ring Training Only

=4 o
o ®

Average Cumulative Reward (Performance) per Epsidoe
°
S

Average Cumulative Reward (Performance) per Epsidoe

0 2500 5000 7500 10000 12500 15000 17500 20000 o 2500 5000 7500 10000 12500 15000 17500 20000
Training Episodes Elapsed Training Episodes Elapsed
(a) Agents are trained on difference rewards. (b) Agents are trained on global rewards.

Figure 3: Average learning curves for different curriculum strategies in 10 x 10 multiagent Grid World Domain with 6 agents
and a coupling requirement of 3 agents simultaneously at the goal cell. The automatic curriculum generation process (ACGP)
using policy progress scores performs on par with the ACGP that uses performance progress. Training agents on the global
reward causes curriculum learning to fail due to the noise in the signal.

v 0.7 0.7
g —— Target Task - Target Task
2 —#- Nearest Ring —# - Nearest Ring
= 067 .. 2nd Nearest Ring o %07 -3¢ 2nd Nearest Ring +
3‘ —&- 2nd Farthest Ring E —&- 2nd Farthest Ring /s N
-] . ’
é 0.5 4 —® Farthest Ring PR bt Sl BN & p5 q —®— Farthest Ring s AN _
© : \ 5 ot AN
j=d s * o ~
c s N o
S 0.4+ ’ . = 0.4
& . ~ -4
P
& 5
5 0.3 5 0.3
w v
©]
o . o " . . wl
® 5 .. SRR I -
€ 024 - p > 0.2
v A F s C ©
E o
@ =
a <
w 0.1 0.1 A
o
: W
5 .
=
< 0.0 T T T T T T T T T 0.0 T T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Training Episodes Elapsed Training Episodes Elapsed

(a) Policy Progress: Average rate of selection for each intermediate (b) Performance Progress: Average rate of selection for each inter-
task given the automatic curricula generated using policy progress mediate task given the automatic curricula generated using perfor-
scores. mance progress Scores.

Figure 4: Average percentage for selecting a task using the automated curriculum generation process (ACGP) with either
of the progress scores. For example, at about the 12500th training episode, ACGP using policy progress score selected the
Nearest Ring task near 50 percent of the time; the ACGP using performance progress score selected the Nearest Ring task
about 60 percent of the time. These results are evaluated in 10 x 10 multiagent Grid World Domain with 6 agents and a
coupling requirement of 3 agents simultaneous at the goal cell. Our approach (policy progress) select tasks with the similar
frequency as performance progress.

We compare ACGPs using performance progress versus formance progress required an additional evaluation episode
policy progress on single agent and multiagent Grid World on the target task for estimating the change in performance.
domains. For the single agent Grid World Domain, using Thus our approach is more computational efficient. Fu-
either performance or policy progress scores does not alter ture work will extend the evaluation on the merits of each
the rate of learning over training directly. However, with the progress score on additional domain, and address the disad-
more complex multiagent Grid World domain, ACGPs us- vantages of each progress score.

ing either progress score achieves a faster learning rate than
learning on the target task alone. In general, the ACGPs
using our policy progress approach performed comparably
to ACGPs using performance progress scores; however, per-

REFERENCES

1]

[12]

[13]

[14]

[15]

P. Abbeel and A. Y. Ng. Apprenticeship learning via
inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine
learning, page 1. ACM, 2004.

A. Baranes and P.-Y. Oudeyer. Active learning of
inverse models with intrinsically motivated goal
exploration in robots. Robotics and Autonomous
Systems, 61(1):49-73, 2013.

D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active
Learning with Statistical Models. Journal of Artificial
Intelligence Research, 4:129-145, 1996.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul,
J. Z. Leibo, D. Silver, and K. Kavukcuoglu.
Reinforcement learning with unsupervised auxiliary
tasks. arXiv preprint arXiv:1611.05397, 2016.

P. Kormushev, S. Calinon, and D. G. Caldwell. Robot
motor skill coordination with em-based reinforcement
learning. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pages
3232-3237. IEEE, 2010.

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and

J. Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and
intrinsic motivation. In Advances in neural
information processing systems, pages 3675-3683,
2016.

M. P. Kumar, B. Packer, and D. Koller. Self-paced
learning for latent variable models. In Advances in
Neural Information Processing Systems, pages
1189-1197, 2010.

M. Lai. Giraffe: Using deep reinforcement learning to
play chess. arXiv preprint arXiv:1509.01549, 2015.
T. Matiisen, A. Oliver, T. Cohen, and J. Schulman.
Teacher-Student Curriculum Learning. arXiv preprint
arXiw:1707.00183, 2017.

S. Narvekar, J. Sinapov, M. Leonetti, and P. Stone.
Source task creation for curriculum learning. In
Proceedings of the 2016 International Conference on
Autonomous Agents € Multiagent Systems, pages
566-574. International Foundation for Autonomous
Agents and Multiagent Systems, 2016.

S. Narvekar, J. Sinapov, and P. Stone. Autonomous
task sequencing for customized curriculum design in
reinforcement learning. In Proceedings of the 26th
International Joint Conference on Artificial
Intelligence (IJCAI), volume 147, page 149, 2017.

A. Y. Ng, A. Coates, M. Diel, V. Ganapathi,

J. Schulte, B. Tse, E. Berger, and E. Liang.
Autonomous inverted helicopter flight via
reinforcement learning. In Ezperimental Robotics IX,
pages 363-372. Springer, 2006.

P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic
motivation systems for autonomous mental
development. IEEFE transactions on evolutionary
computation, 11(2):265-286, 2007.

J. Randlgv and P. Alstrgm. Learning to drive a
bicycle using reinforcement learning and shaping. In
ICML, volume 98, pages 463471, 1998.

B. Settles and M. Craven. An analysis of active
learning strategies for sequence labeling tasks. In

(16]

(17]

Proceedings of the conference on empirical methods in
natural language processing, pages 1070-1079.
Association for Computational Linguistics, 2008.

M. E. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10(Jul):1633-1685, 2009.
K. Tumer and A. Agogino. Coordinating multi-rover
systems: Evaluation functions for dynamic and noisy
environments. In Proceedings of the 7th annual
conference on Genetic and evolutionary computation,
pages 591-598. ACM, 2005.

