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ABSTRACT
Humans are able to understand and perform complex tasks by

strategically structuring the tasks into incremental steps or sub-

goals. For a robot attempting to learn to perform a sequential task

with critical subgoal states, such states can provide a natural oppor-

tunity for interaction with a human expert. This paper analyzes the

benefit of incorporating a notion of subgoals into Inverse Reinforce-

ment Learning (IRL) with a Human-In-The-Loop (HITL) framework.

The learning process is interactive, with a human expert first pro-

viding input in the form of full demonstrations along with some

subgoal states. These subgoal states define a set of subtasks for the

learning agent to complete in order to achieve the final goal. The

learning agent queries for partial demonstrations corresponding to

each subtask as needed when the agent struggles with the subtask.

The proposed Human Interactive IRL (HI-IRL) framework is evalu-

ated on several discrete path-planning tasks. We demonstrate that

subgoal-based interactive structuring of the learning task results in

significantly more efficient learning, requiring only a fraction of

the demonstration data needed for learning the underlying reward

function with the baseline IRL model.
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1 INTRODUCTION
Teaching robots to perform a sequential, complex task is a long-

standing research problem in robot learning. For instance, consider

the task of parking a car into a narrow slot as shown in Figure 1. The

autonomous vehicle may be taught to sequentially move towards

the target across roads while avoiding obstacles such as other cars

and white lines in the environment. One key problem that arises is

that while it can be easy for the car to travel on roads, the car might

struggle locating a specific turning point so that it can fit within the

narrow parking slot, or struggle avoiding hitting other cars when

it turns around. These issues arise because there are certain critical

states, namely, subgoal states, that the agent must visit in order

to complete the entire task. In this example, the car must turn left

somewhere before it reaches the empty parking space.

Leveraging human input is one way to provide information that

could be helpful for learning agents, like robots, to reach important

Figure 1: We develop a framework for training agents that
can perform complex sequential tasks with a set of critical
subgoals, such as when parking a car. In the example sce-
nario, the car must be first positioned in a certain set of
states before being able to continue and complete the goal.
By interactively leveraging information regarding subgoal
states and subtask demonstration as needed from a human
expert, our proposed approach is shown to result in more
efficient learning of the underlying reward function.

subgoal states. Specifically, a human expert can provide demon-

strations of possible trajectories to go through these critical states

for the robot to follow. This type of learning, termed broadly as

apprenticeship learning [1, 10], is a popular approach for leveraging

human input.

Unfortunately, expert demonstrations might not address all of

the learning challenges for the following reasons: (1) Data Spar-
sity - While an expert can provide demonstrations of the entire

task, these demonstrations are usually collected without consid-

ering the learning process (i.e. the structure of the task and diffi-

culties of individual parts). Due to lack of enough demonstrations

on some critical states, figuring out the way to go through them

can still be difficult, which can prevent overall success. Therefore,

complex sequential decision-making tasks usually require a signifi-

cant amount of demonstrations to learn a reward function [15]. (2)

Burden of Human Interaction - Especially in the case of human

experts, constant human robot interaction is very costly and should

be minimized. Unfortunately, methods like online imitation learn-

ing approaches often assume that the expert is always providing

demonstrations during the entire learning process [12]. While this

may be reasonable for some problems, it maybe too impractical for

many other applications. (3) Data Redundancy - A full demon-

stration might not be needed for a learning agent equipped with



Figure 2: Diagram of our proposed approach. A human-expert can leverage subgoal states in order to efficiently interact with
the learning process. Human will first provide a full demonstration covering the entire task (from A to D, these states are
landmarks states in the task and there are other intermediate states not shown here), and define subgoals (B and C) and
subtasks (from A to B, B to C and C to D). Then the agent will attempt the human-defined subtasks. Next, the human will only
provide subtask demonstration where the agent fails. In this example, the human expert first demonstrates the entire task,
and let the agent learn to perform the task. However, the agent may only finish the subtask from A to B (smiley face) but fail
on the subtask from B to C (sad face), and stop at C. Then the human expert will demonstrate the subtask (B to C) that the
agent failed on, and let the agent learn again. This process will repeat until the agent learns to perform the entire task.

a partial model. Given a small number of expert demonstrations,

the learning agent may already know how to perform parts of the

task successfully while struggling only in certain situations. In this

case, it is more efficient to know where the agent fails and provide

specific demonstrations for the part where the agent fails.

We make the observation that human experts can provide high-

level feedback in addition to providing demonstrations for the task

of Inverse Reinforcement Learning (IRL). For example, in order to

teach a complex task consisting of multiple decision-making steps,

a common strategy of humans is to dissect the task into several

smaller and easier subtasks [9] and then convey the strategy for

each of the subtasks (see Figure 2 for an example). It is reasonable

that by incorporating this kind of divide-and-conquer high-level

strategy coming from human’s perception of the task, IRL can

be more efficient by focusing on subtasks specified by human. In

addition, by dividing a complex task into several subtasks using

human’s perception, it will be easier for humans to evaluate the

performance of the current agent. Since the agent may already be

able to perform well on some of the subtasks, a human expert only

needs to provide feedback on subtasks that the agent struggles

with.

We propose a Human-Interactive Inverse Reinforcement Learn-

ing (HI-IRL) approach that makes better use of human involvement

by using structured interaction. Although it requires more infor-

mation from the human expert in the form of subgoal states, we

demonstrate that this additional information significantly reduces

the required number of demonstrations needed to learn a task.

Specifically, the human expert will provide critical subgoals (strate-

gic information) the agent should achieve in order to reach the

overall goal. Thus, the overall task is more "structured" and consists

of a set of subtasks. We show that by using our sample efficient

HI-IRL method, we can achieve expert-level performance with sig-

nificantly fewer human demonstrations than several baseline IRL

models. Additionally, we notice that the failure experience obtained

by the agent may also be helpful to learn the reward function since

the failure experience tells the agent of what not to do. We lever-

age learning from failure experience to improve reward function

inference.

2 BACKGROUND
Maximum Entropy IRL. IRL typically formalizes the underlying

decision-making problem as a Markov Decision Process (MDP). An

MDP can be defined as M = {S,A,T , r }, where S denotes the

state space, A denotes the action space, T denotes the state transi-

tion matrix, and r is the reward function. Given an MDP, an optimal

policy π∗
is defined as one that maximizes the expected cumulative

reward. A discount factor γ is usually considered to discount future

rewards.

In IRL, the goal is to infer the reward function given expert

demonstrations D = {d0,d1, · · · ,dN }, where each demonstration

consists of state action pairs di = {si0,ai0, si1,ai1, · · · , sik ,aik }.
The reward function is usually defined to be linear in the state

features: r = θTϕ(s) = θT fs , where θ is the parameter of the

reward function, ϕ is a feature extractor, and fs is the extracted

state feature for state s . In maximum entropy IRL, the learner tries

to match the feature expectation to that of expert demonstrations,

while maximizing the entropy of the expert demonstrations. The

optimization problem is defined as,

θ∗ = argmax

θ
−
∑
di

P(di |θ ) log (P(di |θ )), (1)

subject to the constraint of feature matching and being a probability

distribution, ∑
di

P(di |θ )fdi =
˜f D , (2)

∑
di

P(di |θ ) = 1 and P(di |θ ) ≥ 0,∀i . (3)
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The expert’s feature expectation can be written as

˜f D =
1

N

∑
di ∈D

k∑
t=0

fit . (4)

Following current reward function θ , the policy π can be inferred

via value iteration for low dimensional finite state problems. Then

following π , and given initial state visitation frequency Ds,0 =

P(S0 = s) calculated from D, the state visitation frequency at time

step t can be calculated as,

Dsi ,t =

|S |∑
k=0

|A |∑
j=0

Dsk ,t−1π (sk ,ak, j )T (sk ,ak, j , si ). (5)

Here π (sk ,ak, j ) is the probability of taking action ak, j when the

agent is at state sk , and T(sk ,ak, j , si ) is the probability of transiting
to state si when the agent is at state sk and taking action ak, j . The
summed state visitation frequency for each state is then Dsi =∑
t Dsi ,t . The feature expectation following current policy π can

be expressed as

f π =
∑
di

P(di |θ )fdi =
∑
si ∈S

Dsi fsi . (6)

The above optimization problem in 1 can be transformed to the

following optimization problem [16],

θ∗ = argmax

θ
P(D|θ )

∝ argmax

θ
exp {

∑
si ∈D

θTϕ(si )}

= argmax

θ
exp {

∑
si ∈D

θT fsi }.

(7)

Optimizing Eq. 7 can be done via gradient descent on negative

log-likelihood with the gradient defined by

∇θ = f π − ˜f D . (8)

Maximum Entropy Deep IRL. Standard maximum entropy

IRL uses a linear function to map state feature to reward value: r =
θT f . Recently, deep neural networks have demonstrated excellent

performance in visual recognition and feature learning [5]. It can

be beneficial to learn reward function for complex visual inputs

using deep neural networks since this task may be too challenging

for linear reward function. The reward function is defined as r =
д(θ , f ), where r is the reward value for state feature f , and θ is

the neural network parameters. In the linear reward function case,

the gradient of the loss function with respect to the parameters is

defined as,

∇θL = ∇rL · ∇θ r

= ∇rL · f .
(9)

From equation 8, we know that ∇θL = f π − ˜f D , which can be

expressed as,

f π − ˜f D = f (Dπ
f − D̃D

f ), (10)

where f is the feature of a particular state,Dπ
f is the agent visitation

frequency of this state, and D̃D
f is the expert visitation frequency

of this state. When deep neural network is used to represent the

reward function, the gradient of the loss function with respect to

the parameters can be expressed as,

∇θL = ∇rL · ∇θ r

= ∇rL · ∇θд

= (Dπ
f − D̃D

f ) · ∇θд.

(11)

IRL from Failure. While maximum entropy IRL tries to match

the expected feature counts of the agent’s trajectory with the fea-

ture counts of expert demonstration, it is reasonable to keep the

expected feature counts following current learned reward different

from that of failure experience. The learning from failure algorithm

proposed in [13] demonstrates the possibility of incorporating fail-

ure experience to improve IRL. Given both successful demonstra-

tions D and failure experience F , we define linear reward function

parameter θd and θf for reward function learned from D and F

respectively. The goal is to maximize the probability of successful

demonstrations, and match the feature expectation of successful

demonstrations, while maximizing the feature expectation differ-

ence with failure experiences. In [13], the optimization problem is

defined as following,

max

π ,w,z
H (D) +wz −

λ

2

∥w ∥2,

subject to:
˜f D = f π ,

f π − ˜f F = z,∑
a

π (s,a) = 1 ∀s ∈ S,

π (s,a) ≥ 0 ∀a ∈ A,

(12)

where H (D) is the causal entropy of the successful demonstrations

D, and is defined as,

H (D) = −
∑
t

∑
s1:t ∈S,a1:t ∈A

P(a1:t , s1:t ) log (P(at |st )), (13)

where P(at |st ) = π (st ,at ) is the policy, and

P(a1:t , s1:t ) = P(s1:t−1,a1:t−1)T (st−1,at−1, st )π (st ,at ) (14)

is the probability of trajectory from time 1 to time t . In Eq. 12, w
is the Lagrange multiplier of z, which is a variable representing

the difference between the feature expectation of failure experi-

ences and the feature expectation following current policy π . The
Lagrangian of Eq. 12 gives the following loss function,

L(π ,w, z,θd ,θf ) =H (D) +wz −
λ

2

∥w ∥2

+ θd (f
π − ˜f D )

+ θf (f
π − ˜f F − z).

(15)

Following the optimization in [13], the optimization step update

for θd and θf is,

θd = θd − α(f π − ˜f D ),

θf =
(f π − ˜f F)

λ
,

(16)

where α is the learning rate for θd and λ is a learning rate for

θf which is annealed throughout the learning. More details of the

learning from failure approach can be found in [13]. The description

of the IRL from failure approach is described in Algorithm 1.
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Algorithm 1 Deep IRL from Failure (IRLFF)

Require: Failure experience F , expert demonstration D

Require: State TransitionMatrixT ,α ,αλ , λ,θ
t
d , λmin , all feature

input f , where θ td is a deep neural network

Return: Updated reward function θd ,θf
Start:

˜f D = FeatureCount(D) (Eq. 4 with D = D)
˜f F = FeatureCount(F ) (Eq. 4 with D = F )
PD
0
= initialStateDistribution(D)

P F
0

= initialStateDistribution(F )

θf = 0
θd = θ

t
d

Repeat:
r = д(θd , f ) + θf · дf c1(θd , f )
π = SoftValueIteration(r )

f π
F

= FeatureExpectation(P F
0
,π ,T )

f π
D

= FeatureExpectation(PD
0
,π ,T )

θd = θd − α(Dπ
f − D̃D

f ) · ∇θdд

θf calculated according to Eq. 19

if λ > λmin :

λ = αλλ
until convergence

3 HUMAN-INTERACTIVE INVERSE
REINFORCEMENT LEARNING (HI-IRL)

We propose Human-Interactive Inverse Reinforcement Learning

(HI-IRL) to make more efficient use of human participation beyond

simply providing demonstrations. Different from approaches such

as [16], we require more human-agent interactions during the learn-

ing process by allowing the agent try out subtasks defined by a

human and letting the human provide further demonstrations on

subtasks if the agent struggles (we provide formal definition of

“struggle” later in this section). Different from approaches such as

DAGGER [12], humans do not need to constantly provide entire

demonstrations; instead demonstrations are obtained only when

required by the agent. There indeed can be other forms of human

interaction when the agent struggles, some of which are compared

to as baselines in the experiments. For example, the human may

continue to provide the entire demonstrations when the agent strug-

gles, similar to the approach in [12]. However, we find this method

of interaction to be less effective. A second possibility is to simply

let the agent try the same task repeatedly, until it happens to finish

the task. Then, the successful trajectory that the agent experienced

can be used as human demonstration. However, this approach is

limited in scenarios with large state spaces. In addition to being

highly inefficient, even if the agent reaches the goal, the trajec-

tory that the agent traveled may not be an optimal or a desired

trajectory. In contrary, we show that our method of structuring the

interaction enables better efficiency on complex tasks. Next, we

first describe our method, HI-IRL, and then give a demonstration

of the optimality of our subgoal selection strategy.

3.1 HI-IRL
Step 1: Human expert provides several full demonstrations
and define subgoals. Given a task consisting of multiple decision

making steps, the human expert will first provide N full demonstra-

tions D = {d0, · · · ,dN } completing the entire task. The number

of demonstrations in D can be relatively small, for example, 1 or 2

demonstrations to learn an initial reward function. The human ex-

pert will then dissect the entire task into several parts by indicating

critical subgoal states where the agent must go through in order to

achieve the overall task. For example, in an indoor navigation task,

the agent tries to find a way from one room to anther, the state

when the agent is at the exit between the two rooms is a critical

subgoal state. While trajectories with different starting position in

the first room and different goal position in the second room varies,

they all need to go through the critical state corresponding to the

exit.

We denote these critical subgoal states as Ssub . One typical

characteristics of these subgoal states is that the probability of any

expert trajectories to include them will be close to 1,

P(si ∈ dj ) ≈ 1,∀si ∈ Ssub and ∀dj ∈ D . (17)

The reason why it may not be 1 is to allow cases where there

are multiple states functioning very similar as subgoal states. For

instance, there are multiple exits from one room to another in

the indoor navigation example. In this case, the probability of any

expert trajectories to include any one of these states will be 1.

Given these subgoal states Ssub , any trajectory ξ = {s0, · · · , sk }
can be dissected into several subtasks Tsub = {d1,d2, · · · ,dm },

wherem is the number of subtasks within this trajectory ξ , and

concatenating these subtasks together will get the original trajec-

tory ξ . The starting state and end state of each of these subtasks

except d1 and dm belong toSsub . The end state and starting state of

d1 and dm , respectively, belong to Ssub . A more formal definition

of trajectory dissection is to consider all possible trajectories from

a chosen start state to goal state as a set Ξ = {ξ1, · · · , ξx }, and
subgoal states are defined by,

Ssub =

x⋂
i=1

ξi . (18)

Step 2: Agents tries the defined subtasks. Starting from a ran-

domly selected starting state sr , the agent will be required to reach

each of the subgoals sequentially towards the ultimate state sдoal .
This means that given the optimal path from the agent’s current

state sr to the goal state sдoal : ξsr→sдoal = {sr , · · · , ssub1, · · · ,

ssub2, · · · , ssubk , · · · , sдoal } where the agent is expected to reach

subgoal states along the path from ssub1 to ssubk sequentially. If the

agent successfully arrives to subgoal ssubi within stepmin,ssubi +

stepthr , the agentwill be required to reach the next subgoal ssub(i+1)
starting from current state ssubi . Here, stepmin,ssubi is the mini-

mum steps required to reach ssubi from the start state sr , and
stepthr is the extra threshold steps to allow some exploration.

Step 3:Humanprovides further demonstrations if needed.
Depending on the performance of the agent on the subtasks, if the

agent successfully finished all subtasks, then the human expert

will not provide further demonstrations. The human expert will

only provide demonstrations on subtasks that the agent struggles.

4



Figure 3: Subgoals specified in 12x12, 16x16, 32x32 grid world environment, and car parking environment. In the grid world
environment, states are defined as the grid position the agent is current at (specified by red box), goals are represented by green
box, and subgoals are indicated by red stars. In the car parking environment, states are defined as the car global coordinate
as well as the orientation of the car, which can be represented by an arrow. The subgoals in the car parking environment is
specified by a set of red arrows.

Algorithm 2 Human-Interactive Inverse Reinforcement Learning

(HI-IRL)

Require: Set of initial demonstrations d0, T , State Transition

Matrix T , θ0, all state raw feature f , and human H .

Return: Reward function θT+1

Define: D: positive demonstrations; F : failure experience; E:

agent experience; Ssub : set of subgoal states

Start:
Ssub = specify_subgoals(H )

D = d0;
θ1 = MaxEntIRL(D, θ0)
for t ∈ 1, 2, ...,T

E = Rollout(θ t , Ssub )
for e in E

F ,D = UpdateDemo(e , θ t , D)

θ t+1d ,θ t+1f = IRLFF(F ,D, T , θ td , f ) (Alg. 1)

θ t+1 = (θ t+1d ,θ t+1f )

For example, if the agent is not able to complete a subtask ending

in subgoal ssubi , then human will provide further demonstrations

on this subtask. Since these additional demonstrations may not be

complete demonstrations starting from the very beginning state to

the ultimate goal state, we refer to these demonstrations as partial
demonstrations. The initial demonstrations mentioned in step 1 are

referred as full demonstrations. This intuitive interaction scenario

is formally defined below.

Suppose the agent is given a subtask to go from state si to

state sj . The minimum number of steps to travel from si to sj is
stepmin,si→sj , and to allow some level of exploration, the agent

will be given extra stepthr steps to reach sj . The value stepthr de-
pends on the difficulty of specific task, if the task is fairly difficult,

we set it to a high value, otherwise, we set it to a low value. In

our approach this value can be regarded as a hyper-parameter that

needs to be tuned. Struggling is defined as the scenario where the

agent is not able to reach sj within stepthr + stepmin,si→sj . Here,

the human will provide further demonstrations on this particular

task (from si to sj ).

Step 4: Learning reward function fromboth failure experi-
ences and expert demonstrations. When the agent fails to finish

some subtasks, it gains failure experiences, denoted as F . These

demonstrations are not given by human, but instead by the learning

agent itself. The expert’s further demonstrations are denoted as

D, which already includes the initial full demonstrations. Since

learning from failure approaches [13] generally focus on the linear

reward function case, we propose to use a deep neural network

to extract features from raw states, and then use a linear reward

function to get reward value from these extracted features.

Our deep neural network reward function takes in input in the

form of raw states (i.e., images) and process it with three con-

volutional layers with each one followed by batch normalization

layers and ReLU activation. Two fully connected layers are fol-

lowed to output the final reward value. The last layer outputs a

scalar value which will be used as the reward value corresponding

to θd in Eq. 16. The second last layer output vector will be used

to calculate θf in Eq. 16. If we denote the network parameters as

θd = {conv,bn,ReLU , FC1, FC2}, the network input as f , and the

network function as rd = д(θd , f ), then we have

FC1,out = д(conv,bn,ReLU , FC1, f ) � дf c1(θd , f )

θf =
FCπ

1,out − F̃C
F
1,out

λ

(19)

Here θd will be the neural network and θf will be a vector of

the same size as FC1,out , FC
π
1,out is the feature expectation fol-

lowing the current policy π , and F̃C
F
1,out is the feature expecta-

tion of failure experience F . The final reward function will be

r = д(θd , f ) + θf · дf c1(θd , f ). The detailed learning from both

failure experience and expert demonstration algorithm is described

in Algorithm 2.

3.2 Optimality of Subgoal Selection
In HI-IRL, the human will specify critical subgoal states Ssub
which have a very high probability to be included in any expert

demonstrations, and other non-critical states will have relatively

lower probability to be included in any expert demonstrations.

Define Snc � S \ Ssub as all states except human defined sub-

goal states. Given two trajectories ξ1 = {s1,0, s1,1, · · · , s1,k } and

5



ξ2 = {s2,0, s2,1, · · · , s2,k }, where s1,i = s2,i ,∀i ∈ {0, · · · ,k − 1},

and s
1,k ∈ Ssub and s

2,k ∈ Snc , intuitively, ξ1 will be favored over

ξ2,

P(ξ1) > P(ξ2)

⇒ exp

k∑
i=1

r (s1,i ) > exp

k∑
i=1

r (s2,i ),

⇒ r (s
1,k ) > r (s

2,k ),

(20)

which means that critical subgoal states will have higher reward

than non-subgoal states around them. In the linear reward function

case, the reward function parameter θ is optimized when,

˜f D =

|S |∑
i=1

Dsi fsi , (21)

which means the final policy will favor states that appear more

times in expert demonstrations D in order to match the feature

expectation of D. Given two states s1 and s2, and define p(s1,D)

as the frequency of s1 appears in D, the same for s2, and suppose

p(s1,D) > p(s2,D), then we have,

Ds1 > Ds2

⇒ P(ξ1 |s1 ∈ ξ1) > P(ξ2 |s2 ∈ ξ2),
(22)

where ξ1 and ξ2 are two trajectories, where all other states are

same, except that ξ1 contains s1 while ξ2 contains s2. Given Eq. 20,

we know that r (s1) > r (s2), which means states that appear more

times in expert demonstrations will typically have higher rewards.

Therefore, in order to make sure those critical states have higher

rewards, we must increase the demonstrations around them. By

letting human specify these critical states, and providing extra

demonstrations if the agent struggles, we ensure that these states

receive more attention during demonstration collection, which

leads to better reward function learning.

4 EXPERIMENTS
We designed the experiment parts to demonstrate the key contribu-

tions of our proposed HI-IRL method. First, we demonstrate that

by leveraging human interaction in inverse reinforcement learning,

we obtain better data efficiency than traditional inverse reinforce-

ment learning approach that trains on offline collected data (the

standard maximum entropy IRL method). Second, we provide a
better human interaction strategy where the burden on human can

be reduced compared with existing methods such as [12]. Third,
we demonstrate that by carefully selecting the key subgoals, it

achieves better reward function learning than random selection

of subgoals. The experimental environments are designed to be

complex sequential decision making process with critical subgoal

states that the agent must go through in order to complete the

overall task.

Baselines. In order to show the key contributions of our HI-IRL

method, we compare our algorithm with (1) maximum entropy IRL

(here after denoted as MaxEntIRL); (2) human interactive IRL with-

out specifying subgoals (here after denoted as HI-IRLwos), which
is similar to approach like [12]; and (3) human interactive IRL with

randomly selected subgoals ( here after denoted as HI-IRLwr). In
human interactive IRL without specifying subgoals, the procedure

is similar to our method, except that the agent will be required to

complete entire task and human expert will provide full demon-

strations if the agent struggles. The purpose of comparing with

MaxEntIRL is to show the benefits of interacting with human during

the learning process (ourfirst contribution).While both HI-IRLwos
and HI-IRLwr have human interaction, HI-IRLwos tries to provide

the entire demonstration again which contains redundancy and

increases human burden; HI-IRLwr tries to provide demonstrations

for randomly selected subtasks, which fails to emphasize on crit-

ical subgoal states, and may lead to ill reward function learning.

The purpose of comparing with HI-IRLwos is to show the benefits

of subgoal selection as it reduces human burden to demonstrate

entire task (our second contribution). The purpose of comparing

with HI-IRLwr is to show the benefits of selecting critical subgoals

instead of random subgoals (our third contribution).

We performed several sets of experiments in grid-world and car

parking environments spanning different scales of state space. All

environments contain critical subgoal states that the agent must go
through to complete the entire task. In all experiments, we use deep

neural network to represent reward function. In the grid-world

environment, the network is composed of three layers of convolu-

tional neural network with each followed by a batch normalization

layer and ReLU activation layer, then two fully connected layers

are followed to output the final reward value. In the car parking

environment, the network is similar to the network in grid-world

environment, except there are 2 convolutional layers due to smaller

input image size.

Grid-world Environment. The grid-world environment in-

volves grid-world navigation where the agent is put in a place

at the beginning and the task is to find a way to a target position.

In this experiment, grid-world of different scales of state space are

used for evaluation. Specifically, a 12x12, a 16x16, and a 32x32 grid-

world environment are used. Regions in the grid-world where there

are obstacles are not counted towards agent state. The state space

in this game is the grid world image, and the action space consists

of 5 actions, stay in place, go up, go down, go left and go right.

Since all four methods require some initial human demonstra-

tion to learn a reward function, a certain number of human demon-

strations D are collected at the beginning. In both the gridworld

environment and car parking environment, we have finite number

of states and the optimal path from one state to another can be au-

tomatically solved by using the Dijkstra algorithm [14]. Therefore,

we generate the demonstration automatically instead of getting

them from real human. However, human expert will specify crit-

ical subgoal states Ssub to be used in our method. A set of test

starting state will be specified by human that is different from the

training data D. Then D is used to get the reward function fol-

lowing MaxEntIRL method. One demonstration randomly sampled

from D will be used for training initial reward function for our

method, HI-IRLwosmethod, and HI-IRLwrmethod. In HI-IRLwos,
the agent will be required to start from a randomly selected start-

ing state, and find a way to the final target state, and human will

provide further demonstration if the agent struggles. In HI-IRLwr,
randomly selected subgoals will be used to define subtasks, and the

agent will try to complete these subtasks, and human will provide

further demonstrations if needed. All four methods are trained with
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(a) (b) (c) (d)

Figure 4: Number of demonstration steps VS number of steps used to complete the same test tasks curve. (a): 12x12 Grid-world;
(b) 16x16 Grid-world; (c) 32x32 Grid-world. (d) Car parking environment.

the same learning rate and number of iterations. Different num-

ber of demonstrations are used to train reward function and then

evaluate on the same test task 5 times to get the mean value of test

performance.

Car-Parking Environment. Parking a car into a garage spot

involves driving the car to a place near the slot, adjust the orien-

tation of the car and drive the car into the parking box without

hitting obstacles. In this environment, it is critical that the car has

to stop at a certain state near the parking slot to ensure that after

adjusting the orientation, the car will not hit obstacles. The car

parking environment interface is shown in Figure 1. The number

of agent possible states is about 5k – much larger than the state

space in the grid-world environment. The state of this game is the

car parking interface, and the action space consists of stay in place,

move forward, move back, rotate to the left and rotate to the right.

At the beginning, human demonstrations and human specified

subgoals are collected. Then follow the same procedure as in the

grid-world environment, we obtained training results for all four

methods. The subgoals selected for each environment is visualized

in Figure 3.

4.1 Results and Analysis
Grid-world Environment. The number of demonstration steps

versus number of steps used to complete the same test tasks curve

is shown in Figure 4, which includes the results for all four methods.

The test task is to set the agent at some initial states on the top

left region in the grid world, and then require the agent to travel

to the same destination as in training time. Since the goal of our

approach is to reduce the burden of human, for example, the hu-

man will provide less demonstrations, the results indicate that our

method achieves better human interaction efficiency and the agent

learns to complete the same test task with less but more informa-

tive demonstration from human. The reason why the MaxEntIRL
method works worse than the other three methods is that there are

much more training data to learn from in this method. Therefore,

it may require more iterations to train, which is another burden of

this method. The HI-IRLwrmethod works in the 12-by-12 state size

case, but does not work in the 16-by-16 state size case. The reason

is that the subgoals are randomly selected, which means there is

a probability that they are selected to be near the critical subgoal

states, achieving similar performance as our method. Our method

uses slightly more steps to complete the test task in the 32-by-32

grid-world at initial training than HI-IRLwos method. However, as

indicated in the figure, we can use less steps of demonstrations but

achieve similar performance.

Car-Parking Results. The car-parking results include the num-

ber of demonstrations versus number of steps to complete the same

test tasks curve shown in Figure 4. Our method achieves near ora-

cle performance with less demonstrations from human than other

baselines. Since this MDP contains much richer states (in total 5k

states) than previous MDPs, this experiment demonstrates that our

method has the abilility to generalize to large state space case.

5 RELATEDWORK
Inverse Reinforcement Learning (IRL). IRL is a method that in-

fers a reward function given a set of expert demonstrations [1, 10].

One of the key assumptions of IRL is that the observed behavior is

optimal (maximizes the sum of rewards). Maximum entropy inverse

reinforcement learning [16] employs the principle of maximum en-

tropy to learn a reward function that maximizes the posterior prob-

ability of expert trajectories. Though [16] relaxes the optimality

constraints, it cannot handle significantly suboptimal demonstra-

tions. [16] also does not consider the redundancy of demonstrations.

In our case, since we have both agent’s failure experience as defined

later and expert’s demonstrations, we can leverage the failure ex-

perience to improve the current reward. By using human feedback

interactively in the training, our method aims to ultimately improve

the reward inference process. By interacting with the human only

when needed, we are also able to reduce the amount of human

involvement (i.e., redundant demonstration data).

Human-in-the-Loop IRL. Leveraging different types of hu-

man input during training has been previously shown to improve

performance accuracy and learning efficiency. In [3], the human

and robot collaborate with each other to maximize the human’s

reward. Yet, [3] assumes that the underlying reward function for

every state is visible for the human, which may not be practical for

many RL problems. One reason for this is that the human usually

knows what action to take under a specific state, but it is hard to

infer the value function of states as it triggers another IRL problem.

In [11], agents constantly seek advice from a human for clustered
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states, and so the learned reward gradually improves. However,

creating the state clusters and give general advice for particular

clusters is itself a demanding task for the human, since the states

within a cluster may not have the same optimal policy and the

human has to tradeoff to make a decision. The work of [2] stud-

ied the safety of AI by giving human feedback when the agent is

performing sub-optimally, the method can reduce the amount of

human involvement to learn a safe policy. However, the problem

studied is different from ours since we focus on improving IRL

performance on complex sequential decision-making tasks instead

of AI safety. As a human-in-the-loop imitation learning algorithm,

DAGGER [12] has proven to be effective in reducing the covari-

ate shift problem in imitation learning. However, [12] does not

explicitly learns a reward function and requires constant online

interaction.

Hierarchical IRL. Hierarchical reinforcement learning [6] was

proved to be effective in learning to perform challenging tasks with

sparse feedback by learning to optimize different levels of temporal

reward functions. Hierarchical IRL [4] was recently proposed to

learn the reward function for complex tasks with delayed feed-

back. The work of [4] shows that by segmenting complex tasks

into a sequence of subtasks with shorter horizons, it is possible

to obtain optimal policy more efficiently. However, since [4] does

not get expert feedback during learning, and does not explicitly

leverages partial demonstrations, it may still involve redundant

demonstrations.

Learning from Failure. Traditional IRL assumes the demon-

strations by experts are optimal in the sense that it optimizes the

sum of reward [8, 10, 16]. Recently, learning from failure experience

has been proven to be beneficial with properly defined objective

functions [7, 13]. Inspired by [13], we complement the human-in-

the-loop training process with learning from failure experience

experienced by agents, as we find it to improve reward function

inference.

6 CONCLUSIONS AND REMARKS
Motivated by the need to address challenges when learning complex

sequential decision-making with an IRL framework, this paper

presents a framework for leveraging structured interaction from a

human during training. In addition to providing demonstrations

of the task to be performed by a learned agent, the method also

leverages the human’s high level perception about the task (in the

form of subgoals) in order to improve learning. Specifically, humans

can transfer their divide-and-conquer approach for problem solving

to inverse reinforcement learning by providing segmentation of

the current task and a set of subtasks. Additional improvements are

made by employing the agent’s own failure experience in addition to

the human’s demonstrations. Experiments on a discrete grid-world

path-planning task and large state space car parking environment

demonstrated how subgoal supervision resulted in more efficient

learning.

For future work, we would like to apply HI-IRL for additional

tasks with increasing complexity. Incorporating HI-IRL with a real-

world robot experiment could further support its use in applica-

tions where input from a human is helpful but costly to acquire.

In addition, it is also interesting to explore automatic optimal task

dissection to further reduce human burden.
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