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ABSTRACT
Complex, real-world environments may not be fully modeled for an
agent, especially if the agent has never operated in the environment
before. The agent’s ability to effectively plan and act in the environ-
ment is influenced by its knowledge of when it can perform specific
actions and the effects of those actions. We describe progress on an
explainable exploratory planning agent that is capable of learning
action preconditions using an exploratory planning process. The
agent’s architecture allows it to perform both exploratory actions
as well as goal-directed actions, which opens up important consid-
erations for how exploratory planning and goal planning should be
controlled, as well as how the agent’s behavior should be explained
to any teammates it may have. We describe initial approaches for
both exploratory planning and action model learning, and evaluate
them in the video game Dungeon Crawl Stone Soup.

1 INTRODUCTION
Sufficiently complex environments, like those that may be encoun-
tered in the real world, are rarely fully defined and modeled in
advance. Even minor changes in the environment, like weather
conditions, can significantly impact how an agent is able to act. For
example, the action preconditions for steering a vehicle in snow
differ from the preconditions when the weather is clear. It is unreal-
istic to assume that a knowledge engineer would be able to provide
the agent with information related to all possible environment vari-
ants. Instead, it would be advantageous for the agent to be able to
dynamically learn how novel environments impact its ability to act
and update its action model accordingly.

We present early work towards an explainable planning agent
capable of operating in new environments, even if those environ-
ments differ noticeably from previously encountered domains. We
do not assume the agent will have access to an expert-provided
domain model or plan traces. Instead, we consider agents that per-
form exploration to obtain a collection of action interactions and
uses those interactions for learning relational action models (i.e.,
preconditions and effects). The agents are not expected to be purely
exploratory, but instead be members of teams where other team-
mates may request the agents to pursue provided goals. Given that,
at any time, the agents may be performing a mixture of exploration
(i.e., attempting actions), learning (i.e., learning action models), and

goal pursuit (i.e., exploiting a learned model to achieve teammate-
provided goals), explanation of the agents’ behavior is important
to ensure teammates understand and trust the agent. Our work has
four primary contributions:

• A baseline exploratory planning approach that attempts to
equally distribute the agent’s actions in varying contexts.

• A method for learning action preconditions from the agent’s
own environment interactions.

• An implementation of both exploratory planning and action
model learning as part of an explanatory goal reasoning
agent.

• A preliminary evaluation in a video game setting.

The remainder of this paper describes our explainable exploratory
planning agent and presents our current progress on implementing
various capabilities in the agent. Section 2 describes our overall
agent architecture and highlights the specific components we fo-
cus on in this paper, namely exploratory planning, action model
learning, and explanation. Section 3 presents our exploration pro-
cedure, with Section 4 describing our technique for action model
learning. We describe an initial evaluation of a subset of the agent’s
capabilities in the open-source video game Dungeon Crawl Stone
Soup (DCSS). Section 5 discusses the explanation capabilities we
anticipate will be necessary for the agent. Related work in the
areas of action model learning, explainable planning, and explana-
tions when reasoning over goals is discussed in Section 6. Section
7 describes our planned future work, with concluding remarks in
Section 8.

2 EXPLORATORY PLANNING AGENT
We adopt the planning formalism from [2] with a state transition
system Σ = (S,A,E,γ ) where S is the set of all states, A is the set of
actions, E is the set of events, and γ is the state-transition function.
In this paper, we build off of our architecture for an exploratory goal
reasoning agent [8], shown in Figure 1. Although further details
about the architecture are provided in our previous work, we focus
our discussion on the Exploration Planner and Transition Model
Learner components.

The role of the Exploration Planner is to obtain novel interactions.
An interaction is defined as a triple ⟨si ,ai , si+1⟩ where si ∈ S is the
previous state before taking action ai ∈ A and si+1 ∈ S is the state
after ai is executed. As the agent acts in the environment, either in
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Figure 1: Architecture for our exploratory goal reasoning
agent

an attempt to achieve a goal, as guided by the Goal Planner, or in an
attempt to gain example interactions, as guided by the Exploration
Planner, all interactions are recorded and added to the Interaction
History I . We collect complete states from the environment, in
this work the DCSS simulator, after each action is executed. The
Interaction History provides training examples that can later be
used by the Transition Model Learner to learn a Domain Model.
Thus, by guiding the agent’s actions, the Exploration Planner can
impact which interactions are stored in the Interaction History and
used for learning. The Exploration Planner is described in more
detail in Section 3.

The Transition Model Learner uses an inductive learning pro-
cedure to learn the preconditions of each of the agent’s actions
(i.e., update the Domain Model with the actions’ preconditions). An
example of the learned preconditions for the southeast move action
from the DCSS domain is shown in Figure 3. For more detail, see
Section 4. While this work focuses on updating the Domain Model
with the preconditions of actions, we also plan to learn action ef-
fects using a case-based approach that examines the set difference
between the previous state si and the next state si+1. Since some ac-
tions are non-deterministic, there may be multiple possible effects
for the same set of preconditions. In DCSS, the same keypress from
a user is used for both movement (i.e., when the adjacent square
is empty) and simple melee combat (i.e., when an enemy is in the
destination square). When there is an enemy in an adjacent square,
the attack may either hit ormiss, and a hit causes a random amount
of damage drawn from a state-dependent distribution.

The Goal Planner can use any automated planner, although in our
work we currently use the Metric-FF planner [6] due to its ability
to handle numeric values. Finally, the Controller is responsible for
goal reasoning (i.e., reasoning over possible goals and selecting a
subset to pursue) and explanation (e.g., explaining its behavior to
teammates, such as the Supervisor).

3 EXPLORATION PLANNER
Our Exploration Planner uses contexts to guide the exploration
process. A context c is a first-order relational conjunct c1 ∧ c2 ∧
. . .∧ cn that refers to one or more existentially quantified variables
and is satisfied by some states S ′ ⊂ S . We describe a context c

having n terms as being of size n (e.g. Figure 2 shows contexts of
size n = 3, 4, 5). Context terms may include the following: finite
relations over objects, finite equalities and inequalities between
integers and functions over objects, and the infinite “successor"
relation that describes consecutive integers. An upper bound1 C on
the number of possible contexts for a given size n is given by

C =

(
M! × 2 × |P |

n

)
,

whereM is the maximum number of arguments for a single predi-
cate p ∈ P . In a context with multiple terms, each term must refer
to at least one existentially quantified variable that is also present
in another term; this requirement means that no context of size n is
semantically equivalent to the conjunction of two or more smaller
contexts of size < n. For example, in the context of Figure 2a, T1 is
such an existentially quantified variable. We describe the set of all
legal contexts for an environment Σ up to a size n as contexts(Σ,n).

During execution, a context is considered active if it is satisfied
by the current state s . The agent maintains a count of the number of
times each context action-pair ⟨c,a⟩ has occurred in the Interaction
History. This is given by the function:

examples(c,a) =

����{⟨si ,ai , si+1⟩ ∈ I | c |= si ∧ ai = a}

����
To determine the next action, the Exploration Planner chooses the
action a that minimizes examples(c,a) for all active legal contexts
of a size less than or equal to n:

argmin
a∈A

min
c ∈contexts(Σ,n)

examples(c,a)

The intuition behind using contexts for exploration is that the
same action needs to be executed in multiple contexts in order
to learn the complete precondition rule, and also effects, for that
action. Consider the preconditions for southeast shown in Figure 3.
In order for the agent to learn the condition not wall(V0), it needs
to execute the action in a context where there is a wall southeast
of the agent, thereby preventing the action from succeeding. This
produces a negative interaction. To learn positive interactions, the
agent must execute the action in contexts where there is not a
wall in a cell to the southeast. These positive interactions enable
learning the other preconditions besides not wall(V0).

In future work, we will explore the use of goal achievement
planning to explore regions of the state space that are underrepre-
sented by prior interactions. We hypothesize that this will help in
seeking rare contexts that may be necessary to witness interesting
effects from certain actions (for example, a pickup action will not
have interesting effects unless there is an object on the ground in
the same tile as the agent). Seeking such contexts requires either
planning for existentially quantified goals or attempting to plan
for multiple grounded versions of a goal which may or may not be
attainable. We expect to encounter issues related to planning with
incomplete domain models [16] since the action model may first

1This upper bound assumes all predicates p ∈ P have a number of arguments equal
to the maximum number of argumentsM , however usually some p have less thanM
arguments.
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{agent-at(T1), at(T1,X1,Y1),
at(T2,X2,Y2)}

(a) Context of size 3

{agent-at(T1), at(T1,X1,Y1),
at(T2,X2,Y2), not wall(T2)}

(b) Context of size 4

{agent-at(T1), at(T1,X1,Y1),
at(T2,X2,Y2), not wall(T2),
X2 = X1-1}

(c) Context of size 5

Figure 2: Example contexts of varying sizes

southeast(V3) :-
at(V0,V1,V2), at(V3,V4,V5),
not wall(V0), V4 = V1-1,
V5 = V2-1, agent-at(V3).

Figure 3: Learned rule from ILASP for the southeast move
action in the Dungeon Crawl Stone Soup domain

require interactions in the desired context. However, this must en-
tail learning; in deterministic environments, failure to attain a goal
that is reachable given the current model necessarily involves in-
teractions that contradict the current model. Such examples should
serve to improve the model.

4 TRANSITION MODEL LEARNING
We are interested in agents that can learn their action model online
while operating in a new environment. For our Transition Model
Learner component, we assume that action predicates and argu-
ment types are known to the agent a priori (i.e., provided as expert
domain knowledge) as well as a model of the environment that
includes objects, types of these objects, and predicates for these
objects. Currently we assume the world is fully observable and
deterministic; we will relax these constraints in future work.

As we discussed previously, every action the agent takes is
recorded into a triple ⟨si ,ai , si+1⟩ and stored in the Interaction
History, which can be used later for learning. We have taken an
inductive learning approach, inspired by prior work on learning
action models (discussed later in Section 6). The primary difference
in our work is that the agent is not provided with expert traces of
action sequences and instead directs its own behavior to acquire
examples of executing actions.

For the inductive learning algorithm, we use the Inductive Learn-
ing of Answer Set Programs (ILASP) system [7] to learn rules that
act as preconditions of individual actions. We assume that if an
action did not change the state of the world, then it failed2, and use
that assumption to label interactions as positive interactions that
succeeded (si , si+1 after performing ai ) or negative interactions
that failed (si = si+1 after performing ai ). Along with the set of pos-
itive and negative interactions stored in the Interaction History, the
2We will relax this assumption for partially observable and dynamic environments for
future work.

facts in the current state (except for the player’s location, since this
is often changing) are given as background knowledge to ILASP.
Additionally, ILASP is given inductive biases describing the types
of predicates that should be considered in the body (in the form
of #modeb declarations), which are translated from the predicates
and arguments types from our domain model of DCSS.

An example for a precondition rule generated by the ILASP
system is shown in Figure 3. This rule encodes the learned precon-
ditions for the southeast move action for the Dungeon Crawl Stone
Soup domain. The various values used in the rule are:

• V3: The cell the player is currently located in - serving as
the action’s argument.

• V0: Another cell that is southeast of V3.
• V1: The x-coordinate of V0, an integer value.
• V2: The y-coordinate of V0, an integer value.
• V4: The x-coordinate of V3, an integer value.
• V5: The y-coordinate of V3, an integer value.

In the domain, x-coordinates increase from west to east, and y-
coordinates increase from north to south. The rule that was learned
is that to move southeast from V3, the agent must be at V3, and
there must be another cell V0 that has an x-coordinate that is one
square east (V 4 = V 1 − 1) and one square south (V 5 = V 2 − 1).
Additionally, there must not be a wall at V0.

In our current setup, we support learning the eight cardinal
directions and the only change in the environment that occurs
from executing actions is the agent’s location. This allows us to use
Version 2 of ILASP3 and encode the current state as background
knowledge except for the player’s location. When we add actions
that may change other parts of the state (such as picking up or
dropping objects), we will use ILASP’s contexts4 feature which
allows individual positive or negative examples to be associated
with their own background knowledge. This allows for learning
rules where some examples are true in some situations and others
true in other situations, thus relaxing the requirement of having a
single global set of facts (background knowledge) which all rules
must be associated with. For full details of ILASP, see [7].

After every new interaction is recorded, the agent makes an
external call to the ILASP system to perform learning. Each external
call to ILASP takes less then 0.75 seconds, however we expect
that learning will only need to be done occasionally (e.g., after a
batch of new interactions has been collected), so even increased
learning time (which may occur when using ILASP contexts or
noisy examples) will be tolerable.

4.1 Evaluation
Our evaluation aims to provide some preliminary evidence that
our Transition Model Learner can learn action preconditions when
situated in a previously unseen domain, and that our initial im-
plementation of the Exploration Planner can improve the agent’s
ability to learn action models. We hypothesize that:

H1 The agent will be able to learn action preconditions from
collected interactions.

3ILASP supports inductive learning under various conditions, including a small number
of examples (Version 2), an iterative version that scales well with the number of
examples (Version 2i), and learning with large numbers of noisy examples (Version 3).
4This is not related to our use of the term contexts in this paper.
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(a) Screenshot of the full DCSS Game in Progress

(b) Open-room Custom Scenario

(c) Small Custom Scenario

Figure 4: Screenshots of Dungeon Crawl Stone Soup

H2 The agent will demonstrate improved learning when using
the Exploration Planner compared to random exploration.

H3 Exploratory planning with larger context sizes will allow
for improved learning using fewer actions.

H1 relates to our claim that our action learning approach is
beneficial. The rational behind H2 is that because the exploratory
planning agent maintains information about which actions have
been taken in which contexts and prioritizes taking actions that
have never been taken in particular contexts, it will quickly ob-
tain the needed interactions for learning an action. Regarding H3,
contexts of larger sizes capture more complex relationships within
the state space, as shown in the example contexts in Figure 2, and
should be more informative.

4.2 Domain
We conduct experiments in the open-source rogue-like5 video game
Dungeon Crawl Stone Soup6 (DCSS). DCSS is a turn-based video
game in a 2-dimensional grid world that has a number of properties
conducive to evaluating exploration-focused cognitive systemswith
automated planning components:

• Large state-action space: 100s of monsters, objects, and ac-
tions, and a typical game visits 80,000 to 100,000+ tiles (i.e.,
positions in the grid)

• Partially observable: player does not see a tile until it is
within line of sight

• Dynamic: monsters take their own actions independent of
the player, and there are time-based events

• Multiple subtasks required to win the game: item manage-
ment, skill point allocation, and combat

• Natural language text accompanies every item in the game:
player can ask for a description of any tile, object, monster,
etc., within view or in the player’s inventory

5A subgenre of role-playing video games known for procedurally generated content
and permanent death.
6https://github.com/crawl/crawl

• Many actions are probabilistic: spell casting, melee attacks,
and other actions may fail

• Simple to make custom experiments for levels and allows
for integration with custom AI agents

• Other aspects include: permanent death (i.e., repercussions
for poor performance) and procedurally generated levels

We have developed an API7 for the DCSS game that provides a
game state object containing all of the information that a human
player would have access to, as well as the ability to execute actions
received from an external agent. The agent begins by receiving the
initial state and after each action is sent to the game, a new game
state object is obtained from the API.

Figure 4 shows screenshots of the graphical version of the game
with tiled images (the game also comes with an alternative interface
using colored ASCII text displayed in a command line interface).
Figure 4a shows an image of what a human sees when playing the
normal full game. In the lower right are the items in the agent’s
inventory, with monster information just above that, and in the
top right there is information about the player’s health, magical
reserves, and a summary of the base attributes of the player in-
cluding the player’s experience level, strength, defense, hunger,
currently equipped weapon, etc. The bottom left corner shows the
text messages describing events that have happened in ascending
order of most recent messages. For example, the second most recent
message reads: “An adder and 2 jackals come into view”. The center
of the image shows the map which is centered on the player. Tiles
within the line of sight of the player are lighter, with tiles the player
has seen but are no longer in its line of sight being darker, and tiles
the player has yet to see are completely black.

Figures 4b and 4c show custom scenarios we designed for our
evaluation in learning action preconditions. These scenarios are
simply empty rooms with no monsters or objects except for a single
orb. We designed these scenarios to evaluate our method in simple
initial scenarios, however we plan to use more complex scenarios

7We hope to release this API for other AI researchers in the near future.
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with a richer action space, monsters, and other objects as part of
our future work.

4.2.1 Experimental Conditions. We conduct experiments on two
custom scenarios in the DCSS domain. The first scenario (shown
graphically in Figure 4b) is a rectangular room surrounded by walls.
The player begins in the centermost tile adjacent to the southern
wall. The room has a width of nine tiles and height of six tiles. The
second scenario (shown graphically in Figure 4c) is a smaller room
with 22 reachable tiles surrounded by walls. The room structure was
chosen to provide more opportunities to test the diagonal cardinal
actions than the first scenario. Each agent is identical but may differ
in how they select actions. We compare three exploration agents
with context sizes of three, four, and five and one random action
selection planner that acts as a baseline.

In these experiments we only considered eight movement actions
for the agent to learn (the cardinal directions N,S,E,W,NE,NW,SE,SW).
Learning accuracy was calculated by taking all floor tiles in the
scenario and applying perfect precondition rules to determine if
that action could be taken in that tile. We then reduced the number
of tiles used for scoring by removing any tiles where every perfect
precondition rule returned true (these were tiles where any action
could be taken, so any rule that said an action could be taken in that
tile would have been correct). We stored the outcomes of the perfect
rules applied to each of these tiles and computed the outcomes of
the learned rules. The learning score is the percentage of correct
predictions that the learned rule had compared to the perfect rule
for each tile in the test set. Each learned rule was given an accuracy
score between 0 and 1 (inclusive), and the total accuracy is the
sum of the accuracies of each rule. Since there are eight actions,
the minimum score is 0 and the maximum score is 8. This scoring
function was chosen to be agnostic to the specific rules learned and
only identified if the rules contained the correct information (i.e.,
alternate methods of representing the same rule are both equally
correct).

4.2.2 Results. Our results show the performance of an agent
performing random exploration as well as agents using our Explo-
ration Planning technique with various context sizes (C = 3, 4, 5).
We ran each agent for 20 experimental runs and averaged the re-
sults over all runs. Eventually, all agents would reach a perfect
learning score of 8 after collecting sufficient interactions. However,
the results shown in Figures 5a and 5b only show the result up
to the first 300 actions as we are interested in examining which
approaches learn quickly.

4.2.3 Discussion. Looking at the results in Figure 5, we see that
for both scenarios and all agents, hypothesisH1 is met. After about
100 actions, agents have learned rules that total 75% accuracy or
higher, and after about 200 actions most agents have learned six or
seven rules perfectly. While it is not shown, after enough actions
all approaches learn all eight rules perfectly. It is important to note
that even if only random exploration is used, the agent is still able
to learn.

Hypothesis H2 is true for about the first 25 actions in both
scenarios. In Figure 5a we see that the exploration planner with a
size of five learns faster than all other agents including the random
baseline, for most of the scenario. This behavior is more noticeable

(a) Results on the Open-Room Scenario from Figure 4b

(b) Results on the Small Scenario from Figure 4c

Figure 5: Learning Accuracy Score

in Figure 5a than in Figure 5b, we believe this is partly due to the
size of the rooms and the number of opportunities to learn certain
actions. The exploration agents are more likely to try an action
that has not been tried as often in a new context. Since the agent
must be adjacent to a wall in the large room to learn the not wall(T)
condition, the exploration agents have a greater chance of taking
the first opportunity to do so.

After the first 25 actions in Figure 5a we see that the exploration
agents with contexts of size three and four perform worse than
the random baseline agent for rest of the execution (except for the
end when the exploration agent (C=3) meets the random agent
around action 175). This contradicts hypothesis H2 for exploration
agents of size three and four, and demonstrates that context size is
important for exploration agents.

In both graphs, hypothesis H3 is true most of the time for all
exploration agents, where increasing context size either matches or
performs better than lower context sizes, except for a brief period
in Figure 5b where the exploration agent with context size four
performs best (between the 25 and 50 action marks).

While these results are preliminary, they are encouraging and
providemotivation for developing improved exploration techniques,
and performing an extended evaluation in larger scenarios with
more diverse actions. The primary conclusion from these results is
that even with random exploration, action learning for movement
actions is feasible.
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5 EXPLANATION
Our commitment to explanation is intended to help an interested
supervisor, or potentially a collaborator, to understand what the
agent is doing. At a high level, the agent’s reasoning is encapsulated
by the following decisions: a) whether to perform exploration or
goal achievement; b) (if exploring) where to explore; c) (if achieving)
which goal to achieve; and d) how to explore or achieve. Each
decision should be transparent, in order to explain to the supervisor
the agent’s intention. Decisions “b" and “c" take the form of a
logical sentence that describe the context or goal to be achieved.
Decision “d" is a plan (sequence of actions). Decisions “a" and “c"
should give a rationale for selection of exploration, or a particular
goal. Therefore, we initially construct an explanation as a tuple
⟨rationale,дoal ,plan⟩.

Applicable rationales for this agent include the following sym-
bols:

• urдency: meaning that the need to achieve a supervisor’s
request promptly takes precedence over the agent’s lack of
knowledge

• f ailure : meaning that the agent is unable to construct a plan
to achieve a supervisor’s request, and thus will explore its
actions

• idle − voyaдinд: meaning that the agent is not tasked and
is visiting a new area where more novel interactions are
expected

• idle − experimentinд: meaning that an agent is not tasked
and has an insufficient model to predict the effects of its
actions in its current state, and is therefore trying novel
actions

While the above explanation is sufficient to make the choices
of the agent transparent, it does not shed much light on what
the agent has learned or failed to learn, which is a key problem
facing humans interacting with learning systems. In future work,
to further illuminate this for an exploratory planning agent, we
will depict its option space and expected plan traces. An option
space will allow a supervisor to see the options the agent thinks
it has available to it in the next step or next several steps; missing
options or incorrect options will indicate what the agent hasn’t
learned about the transition model. Expected plan traces will go
further in showing, when an agent chooses a plan, why it might
choose a poor plan because of an incorrect assumption somewhere
down the line.

6 RELATEDWORK
Since we are concerned with both exploration and learning rela-
tional action models for planning, we draw on prior work from both
reinforcement learning (RL) and inductive learning. A difference of
this work from RL is that our agent is goal-driven. Given that our
agent does not know when actions can be applied (preconditions)
and the changes made to the state (effects), we draw on ideas from
RL to determine what actions to take in order to obtain enough
examples for learning action models.

Hester and Stone ([2017]) discuss multiple exploration reward
schemes and reward metrics in intrinsically motivated RL systems.
They present two exploration-based intrinsic reward schemes that
seek to take the most novel action. Briefly, action novelty takes into

account the difference of the current state compared to the most
recent state in which an action was executed as well as how uncer-
tain the agents predictions for the state reached after executing the
action.

Sequeira, Melo, and Paiva ([2011]) discuss emotions as a struc-
ture for intrinsic motivations which are balanced against extrinsic
motivations. Numeric intrinisic motivations are based on appraisal
dimensions including novelty, motivation, control, and valence. For
example, novelty is proportional to the number of times an action
has been used in a given situation before. The use of contexts in
our agent is an attempt to reach a similar notion of novelty: taking
actions that have not been tried in similar situations. Currently, our
agent takes the action that has been taken the least among all the
currently active contexts.

Inductive learning approaches that use heuristics have been
effective [4, 13, 15] but may not apply to all learning problems.
FOIL [11] is a greedy algorithm that, like the heuristic approaches
just mentioned, requires both positive and negative examples for
training. Wang ([1995]) developed a system called OBSERVER that
uses expert traces of actions and a simulator for running practice
problems. OBSERVER does not need approximate action models; it
learns action models from scratch that are as effective as human-
expert coded action models assuming expert traces are available.
Our learning problem is similar to those of OBSERVER and FOIL,
hence our use of an inductive learning approach.

To deal with incompleteness of action models, Weber and Bryce
([2011]) give a planning algorithm that reasons about the action
model’s incompleteness in order to avoid failure during planning.
Incorporating such a technique into our agent for the goal-driven
planner would allow the agent to perform planning prior to the
learning of a complete action model (which may not ever happen).

Human-agent teaming, and specifically the need for explanation
in such teams, has been identified as a potential challenge problem
for Goal Reasoning [9]. Their work presents a model for how expla-
nations can be exchanged among teammates and used in decision
making, and presents several common instantiations of the model.
Our work falls under the Single Supervisor instantiation, where
an agent has a supervior that may make requests of it, and it may
need to explain its reasoning or behavior.

Existing applications of explanation to Goal Reasoning have fo-
cused primarily on internal explanations [1] (i.e., for the benefit of
the agent itself) rather than external explanations (i.e., for the bene-
fit of an external user). DiscoverHistory [10] generates explanations
for why observed environment transitions occurred. More specif-
ically, it generates explanations that contain the external actions
(i.e., of other agents) and exogenous event that are most likely to
have resulted in the changes in the environment. In a human-robot
teaming domain, such explanations have been used to allow a Goal
Reasoning agent to determine the plans and goals of other agents,
and reason over its own goals [3]. However, even though these
explanations are used by an agent that is a member of a team, they
are only used internally and never provided to any teammates.

7 FUTUREWORK
This paper presents our preliminary work on action model learning
using exploratory planning. While our initial work on this topic
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looks promising, a number of areas of future work remain. We
have demonstrated the feasibility of our action model learning
approach even when the agent performs random exploration of
the environment, and improved performance when the agent bal-
ances the actions it performs. However, the exploratory approach
leaves significant room for improvement. Our current approach
attempts to maintain an even distribution of performed actions for
each context, but does not attempt to transition between contexts.
This can result in the agent spending significant time exploring
more common contexts while rarely, or never, exploring less com-
mon contexts. Our future work will examine several aspects of this.
First, we will develop methods to estimate how well each context
has been explored (i.e., the total number of actions taken in each
context) and whether any contexts have knowledge gaps (e.g., ac-
tions that have not yet been performed in those contexts). This will
involve both high-level metrics based on the number of actions
performed in each context as well as self-evaluation to determine
the agent’s ability to correctly act in each context. Second, we will
provide mechanisms by which the agent can create goals to move
to underrepresented contexts and explore those regions. Using this
approach, the agent will be able to continuously evaluate its cur-
rent exploration and generate plans to guide further exploration.
Since there may be multiple underrepresented contexts, the agent
can maintain multiple exploratory goals and generate plans that
effectively achieve those goal (or a subset of the goals if they can
only be partially satisfied).

For example, initially the agent will have no information and will
generate goals to explore all contexts. However, since the agent will
not yet have an action model, generating a plan to achieve those
exploratory goals will not yet be possible until it has performed
exploration in the initial context. After initial exploration has been
performed, the agent can learn an initial action model and use that
model to generate plans to achieve its exploratory goals (i.e., place
itself in other contexts). For reasonably complex action models, the
initially learned model will likely be incorrect. However, useful
information can be obtained from both plan generation failure (i.e.,
more exploration in the current context is needed) and action failure
(i.e., a useful observation that can be used to update the action’s
model).

Although generating exploratory goals and plans is useful for
the agent to learn, outside of its initial training exploration will
not be the only motivation of the agent. Thus, it will be necessary
for the agent to manage both exploratory goals and other goals.
For example, if a teammate or operator provided the agent with
a goal to collect samples from the forest, the agent would need to
manage its exploratory goals along with its provided collection goal.
Assuming the agent had already learned an action model that could
complete the collection goal, no exploration would be necessary if
the agent gave priority to non-exploratory goals. However, if the
agent had no existing action model or an incomplete action model,
exploration may be required in order to perform the provided goal.
If, upon entering the forest, the agent determines its action model
for moving is not working as expected because of the debris on the
forest floor, it would need to evaluate whether it should: (a) continue
to work towards the provided goal even if it may consume more
resources (e.g., fuel, time) or fail, or (b) perform exploratory actions
and relearn an improved actionmodel. This type of reasoning by the

agent will involve several important mechanisms of Goal Reasoning,
including discrepancy detection (e.g., if an action failed or did not
have the expected effect) and goal management (e.g., whether to
add exploratory goals).

Pursuing both exploratory goals and provided goals concurrently
opens up several important areas of future work related to explana-
tion. When the agent learns an improved action model, it can use
the differences between its old and new models to provide explana-
tions to teammates. For example, consider an agent deployed in a
new environment containing a slippery surface that significantly
impacts movement. After exploring the new environment and learn-
ing an updated action model, the agent can provide explanations to
its teammates about how its action model has changed. Even if the
agent’s physical embodiment (e.g., a robot) differs from its team-
mates’ (e.g., humans), the explanations may allow the teammates
to more efficiently update their own action models (e.g., learn to
walk slowly to avoid slipping).

In a supervisor-supervisee setting, explanations can be used to
justify failures to the agent’s supervisor. Using the previous example
of a slippery environment, if the agent’s supervisor was inquiring
about why the agent was exceeding time expectations or failing to
achieve goals, the agent could justify its poor performance by pro-
viding an explanation for the precise reasons it was not performing
as expected (i.e., the flaws in its previous action model). Especially
if the supervisor is not physically located in the same area as the
agent, such explanations would be beneficial because they update
the supervisor about unexpected environment conditions and show
the agent is capable of self-diagnosis. Similarly, the explanations
could be used proactively to inform the supervisor about potential
delays in goal completion and any necessary exploration goals that
must be performed concurrently.

8 CONCLUSIONS
This paper describes our explainable exploratory planning agent
and presented methods to allow the agent to perform exploratory
planning, learn the preconditions of its actions, and generate expla-
nations for its behavior. The ability of an agent to modify its action
model dynamically is important if it is placed in new environments
and is not explicitly provided full domain knowledge. Our approach
overcomes this by not only allowing the agent to learn its action
model, but also perform exploratory planning such that it can eval-
uate the success or failure of actions in a guided manner. We feel
that explanation is important in such an agent because it allows for
explaining changing environments to teammates, explaining how
the environment differs from expectations, and explaining why it
is achieving exploratory goals in addition to mission-specific goals.

Although our initial implementations for exploratory planning
and action model learning leave ample room for improvement, our
results in simple scenarios from the Dungeon Crawl Stone Soup
game are promising. Even when exploration is random, the agent is
still able to learn its action preconditions. When simple exploratory
planning is used, the learning performance of the agent is improved.
These results providemotivation for numerous paths of future work,
as described in the previous section, and more thorough evaluations
in increasingly complex scenarios in the Dungeon Crawl Stone Soup
domain.
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