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ABSTRACT
A major limitation of most Reinforcement Learning (RL) methods is
low sample efficiency. One way to address this problem is to employ
human expert demonstrations to speed up the RL process (Reinforce-
ment Learning from Demonstration, or RLfD). The research so far
has focused on demonstrations from a single expert, assuming that
this expert is good at all aspects of a task. However, little attention
has been given to the case where demonstrations are collected from
multiple experts, whose expertise may vary on different aspects of
the task. In such scenarios, it is likely that the demonstrations will
contain conflicting advice in many parts of the state space. In this
paper, we propose a two-level Q-learning algorithm, in which the
RL agent not only learns the policy of deciding on the optimal action
but also learns to select the most trustworthy expert according to the
current state. Thus, our approach removes the traditional assumption
that demonstrations come from one single source and are mostly
conflict-free. We evaluate our technique on two different domains
and the results show that the state-of-the-art RLfD baseline fails
to converge or performs similarly to conventional Q-learning. In
contrast, the performance level of our novel algorithm increases with
more experts being involved in the learning process and the proposed
approach has the capability to handle demonstration conflicts well.
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1 INTRODUCTION
Reinforcement learning (RL) is a paradigm of how an agent can
learn to maximise its cumulative reward from interactions with
the environment. One limitation of most RL methods is their low
sample efficiency. In other words, the number of interactions with the
environment required to reach a specific performance level during
the learning process is always very large.

Reinforcement learning from demonstration (RLfD) is an ap-
proach that employs expert demonstrations of solving the target task
to guide the reinforcement learning agent (e.g. by biasing the ex-
ploration), in order to speed up the learning process and to improve
sample efficiency.

The HAT [10] paper listed three techniques to inject human
demonstrations into the RL process. (1)Reuse human’s policy with
a probability p. (2)Give the RL agent an extra reward if the agent
makes the same action decision as the human’s policy. (3)Extend the

Q-table of an agent, adding "choose expert demonstration" into the
Q-table as an action, which then becomes an action choice in the RL
process.

The SAS algorithm [1] uses reward shaping to incorporate expert
demonstrations and is able to ensure the convergence of RLfD. [5]
extends RLfD to deep reinforcement learning. CHAT [11] improves
HAT by using confidence measurements that avoid being misled by
bad demonstrations, and can be considered state-of-the-art.

Overall, current RLfD techniques rely on the quality of the expert
demonstrations. An accepted assumption of the above mentioned
approaches is that the expert’s policy on each state is consistent and
beneficial. However, this assumption is rather strong. In most cases,
demonstrations can be collected from multiple sources, such as mul-
tiple individuals’ behaviour records using various heuristic rules.
Moreover, the quality of these demonstrations is often imperfect.
Thus conflicting advice suggested by different experts’ demonstra-
tions may occur in a large number of situations. In this paper, we
propose a two-level Q-learning (TLQL) approach to deal with the
challenge of conflicting domain knowledge among multiple experts’
demonstrations. TLQL includes two Q-tables: a high-level Q-table
and low-level Q-table. Compared with traditional Q-learning, it
uses an additional Q-table to record the performance of experts in
each state. During the RL process, TLQL keeps track of both ac-
tion quality and the reliability of experts in each state, and updates
two Q-tables simultaneously by using feedback signals (i.e. reward)
from environment-agent interactions. As a result, TLQL overcomes
the problems of learning from multiple demonstrations and thus
performs better than state-of-the-art RLfD approaches.

Conflicting demonstrations may occur in various situations. In
our experiments, we evaluated TLQL using a maze navigation and a
coloured flag visiting domain. In the first domain, experts’ demon-
strations were conflicting because each expert is reliable in only a
section of the maze. In the second domain, contradictions among
experts’ demonstrations resulted from the different goals of the ex-
perts. Each expert’s goal was comprised of sub-tasks of the ultimate
goal of the domain, and each expert is only good at achieving their
individual goal. The empirical results demonstrate that TLQL out-
performs Q-learning without prior knowledge and CHAT in several
metrics (e.g. jumpstart and overall performance). Furthermore, we
show that the TLQL agent performs better with an increasing number
of experts.



2 PRELIMINARIES
2.1 Reinforcement learning
Reinforcement learning (RL) is a paradigm to compute an optimal
decision sequence to maximise the cumulative reward in Markov
decision processes (MDPs)[9]. An MDP is composed of five parts,
noted as ⟨S,A,T ,R,γ ⟩: S is the set of states, each state representing a
snapshot of the environment at a given time; A is the set of all actions
that an agent can execute; T is the transition function indicating the
probability of state s changing to state s’ via action a. R is the reward
function which denotes the reward (a positive number) or punishment
(a negative number) signal for each agent-environment interaction;
γ is the discount factor balancing short-term and long-term gains.

An RL agent observes a state from the environment and makes a
decision based on the state. It will then receive a numerical reward
signal, and the current state of the environment will be transitioned
to another state. This process, named agent-environment interaction,
generates a sample ⟨st ,at , rt , st+1⟩ at time step t. The RL agent uses
Q-learning to update the Q-value Q(st ,at ), which is an estimate of
the expected discounted cumulative reward when executing action
at in state st and then following the optimal policy.

In this paper, we focus on Q-learning[12], a model-free RL tech-
nique. Q–learning updates the Q-function based on the TD error
between the estimated Q-value and the current experience sample
and the estimated predicted Q-value of next state. For each sample,
the algorithm updates Q-value as follows:

Q(s,a) ← Q(s,a) + α(R + γ max
a′

Q(s ′,a′) −Q(s,a))

2.2 Reinforcement Learning from Demonstration
In the RL process, the reward signal is often sparse and the feedback
based on an episode is frequently delayed. In addition, the "curse of
dimensionality" is an issue of large state spaces. As a result, the sam-
ple complexity of Q-learning is fairly high. Therefore, improving the
sample efficiency, i.e. decreasing the number of experience samples
necessary to learn the optimal policy, is essential. RL from Demon-
stration (RLfD) is an approach that aims at improving Q-learning’s
efficiency by incorporating expert demonstrations. In RLfD the RL
agent utilises the reward signal from the environment as a ground
truth and applies demonstration trajectories as heuristic suggestions
to bias the exploration of the state space.

Early research of RLfD includes [8] using demonstrations to
initialise Q-values to speed up the Q-learning process. [10] proposed
human-agent transfer (HAT) to transmit human knowledge to an
RL agent. HAT extracts demonstration’s information via a classifier
model such as a decision tree. The demonstration information is
then integrated into the RL process. [10] lists three methods to inject
human knowledge into RL process: value bonusextra action and
probabilistic policy reuse. The Value Bonus approach gives the RL
agent an extra reward when the agent makes the same action decision
as the classifier. However, changing the reward directly may cause Q-
learning to lose its convergence guarantees [7]. Brys et al. proposed
the algorithm of Similarity Based Shaping (SBS) [1] to deal with
this problem by employing potential-based reward shaping [13][2]

into the value bonus approach. The SBS algorithm adopts the state-
action Gaussian distance as a potential function to shape the reward
function, which maintains the theoretical convergence guarantees.

In real world applications, demonstrations are usually from differ-
ent experts and may conflict with each other, for example as a result
of low-quality demonstrations. If we directly use SBS and ignore the
emerging conflicts, SBS is not able to learn in scenarios, where the
demonstrations contradict each other in a large proportion of states,
as will be demonstrated later in the experiments section.

Our novel method can deal with conflicts in the demonstrations by
learning a trust value of experts in each state. We employ a separate
Q-table to maintain the value of ⟨state, experts⟩. The RL agent
itself is also represented in the expert Q-table. Therefore, when the
RL agent learns enough about the environment and surpasses the
performance of other experts, it would stop using the information
coming from demonstrations, and converge to the optimal policy in
the same way as basic Q-learning.

2.3 Other Related Work
Hierarchical reinforcement learning (HRL) is another approach to
deal with low sample efficiency of RL. HRL approaches such as
HTD [6] and MAXQ [3] employ action abstractions and require
the programmer to divide the task into sub-tasks. Consequently,
the agent could learn polices on different levels of abstractions. A
major difference between our proposed algorithm and hierarchical
RL is that our approach focuses on learning trust values for differ-
ent knowledge sources in different states and does not require to
manually define abstractions.

Probabilistic policy reuse (PPR) [4] deals with low sample effi-
ciency of RL by reusing sub-optimal policies to bias the exploration.
PPR does this by reusing the action from the policy with the maxi-
mum performance. PRQ [4] applies the softmax exploration strategy
to select the respective policy. Unlike our proposed approach, policy
reuse assumes that the performance of each policy is known. Later
research on policy reuse focuses on transferring policies from similar
domains to speed up learning in the target domain.

3 LEARNING FROM MULTIPLE
DEMONSTRATIONS

This section first introduces the phenomenon of conflicts between
demonstrations from different sources. Following that, our two-level
Q-learning algorithm (TLQL) is proposed to address this challenge.

3.1 Multiple domain knowledge sources
In many applications, such as training an agent to play chess from
human demonstrations, the knowledge comes from different indi-
viduals with different demonstration trajectories, heuristic rules, etc.
Each demonstration may therefore produce different actions and
conflict with other demonstrations in some states.

Nevertheless in early stages of learning, it is beneficial for the
RL agent to follow suggestions from experts rather than randomly
explore without extra information. The problem is to determine
which suggested action from different experts can be trusted in the
case of conflicting advice. One feasible idea is to investigate each
⟨state, expert⟩ pair by trial and error. The proposed novel method
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Figure 1: The structure of 2-level Q-learning

applies Q-learning to expert selection and learns a policy of assign-
ing credit to experts. Combining both Q-learning of experts and
Q-learning of actions simultaneously, the agent has the capability to
effectively deal with conflicts and improve the sample efficiency of
Q-learning even where demonstrations come from multiple conflict-
ing sources.

3.2 Two-level structure of reinforcement learning
Figure 1 shows the structure of the proposed novel algorithm: two-
level Q-learning (TLQL). This algorithm employs a low-level Q-
table and a high-level Q-table. The high-level Q-table is used to store
the value of ⟨state, expert⟩, representing the trust the RL agent has
in the given expert, in the given state. The low-level Q-table is the
same as in regular Q-learning, recording the Q-value of state-action
pairs.

In the process of agent-environment interaction, the agent firstly
observes the state of the environment and then selects an expert by
an ϵ-greedy policy according to the high-level Q-table (the RL agent
itself is also represented as an expert in this Q-table). Afterwards,
it executes the action that the selected expert suggests, and finally
receives the reward and next state feedback from the environment.
The sample of the new algorithm is ⟨s, e,a, r , s ′⟩, where e is the
selected expert and s, a, r , and s ′, are same as in regular Q-learning,
denoting current state, action, reward and the next state, respectively.

3.3 Synchronised Q-table updating
The TLQL algorithm updates information by exploring both experts
and actions with an experience sample ⟨s, e,a, r , s ′⟩. Firstly, the
algorithm updates the low-level Q-value by ⟨s,a, r , s ′⟩ in the same
way as regular Q-learning does.

In order to share information between the high-level Q-table and
the low-level Q-table, as well as make full use of the information of
every sample, it is also necessary to update the low-level Q-table in
addition to the high-level Q-table with the sample ⟨s, e = E,a, r , s ′⟩.
After updating the low-level Q-table, the value of the RL agent
hiдhQ(s,RL) and hiдhQ(s, ei ) : ei (s) = a is set as the Q-value of its
policy max

a
lowQ(s,a). Thus the high-Q value of the RL synchronises

with max
a

lowQ(s,a).

3.4 Pulling it all together
Algorithm 1 shows the pseudo code of TLQL, indicating how all
components of figure 1 work on an algorithmic scale.

Algorithm 1 Two-level-Q-learning

procedure TWO-LEVEL-Q-LEARNING(⟨st ,at , q̂t ⟩, PQ)
Let E be the set of experts, including the RL agent
for all s ∈ S,a ∈ A : lowQ(s,a) ← 0
for all s ∈ S, e ∈ E : hiдhQ(s, e) ← 0
for each episode do:

Initialise s0
for each step in episode do:

ϵ-greedily choose expert e from E using hiдhQ
action a is the suggestion from expert e
Take action a, observe r , s ′

predicted← r + γ max
a′

lowQ(s ′,a′)

∆l = predicted − lowQ(s,a)
lowQ(s,a) ← lowQ(s,a) + α∆l
highQ(s,RL)← max

a′
lowQ(s,a′)

if e=RL then
for each expert e apart from RL do:

if e(s) = a then
highQ(s,e)← max

a′
lowQ(s,a′)

4 EXPERIMENTS
In this section, we present results of TLQL proposed in two domains:
maze navigation and coloured flags visiting. To demonstrate that
TLQL can significantly improve reinforcement learning by utilising
demonstrations from multiple conflicting sources, we define several
domain experts with different expertise in each domain.

In the domain of maze navigation, the maze is divided into three
non-overlapping regions. Each expert is good at moving in a specific
region and has no prior knowledge of other regions (note that this fact
is not known to the experts and to the TLQL algorithm). In the do-
main of coloured flags visiting, the learning task and demonstration
is more complicated. A training agent learns to finish a composite
task in a grid world. Each expert is skilled in one sub-task and all
sub-tasks have the same state space. Because each expert only con-
cerns on its individual target, experts may make different decisions
in a state. Thus many conflicted but local-optimal demonstrations
will be recorded.

Unlike hierarchical RL, the partition of the domain is used to
simulate the experts’ different skills, the agent does not know the
partition information in advance. The agent learns the strengths of
each expert in high-level Q-learning.

In our experiments, we compared TLQL with two baselines: tra-
ditional reinforcement learning (RL) and confidence-based human-
agent transfer (CHAT)[11]. The former one uses Q-learning ap-
proach without any prior knowledge. CHAT is the state-of-the-art
approach of improving reinforcement learning from demonstration.
As CHAT does not consider conflicting demonstrations caused by
multiple domain knowledge sources, we adopt weighted random
policy to make choices for CHAT when a contradiction occurs.
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Figure 2: Maze with three areas. The initial state is marked ’S’
in area 1 and the goal state is marked as ’G’in area 3. The goal
of agent is to move from ’S’ to ’G’ as quickly as possible. Black
grids are walls that the agent cannot go through.

Specifically, when multiple experts made different decisions in a
state, each action is given a weight based on how many experts
suggest this action. Then an action is chosen randomly based on
these weight values: actions with higher weights will be chosen with
higher probability.

All reported results in our experiments are averaged over 100
trials. All result figures display a 99% confidence interval to show
statistical significance.

4.1 Maze navigation
The first experiment is with a maze environment as shown in Figure 2.
The maze consists of 30*10 states. In each state, the agent has four
available actions: up, down, left and right. It can move to one of
the four directions as long as there is no obstacle in that particular
direction. Furthermore, there is a probability of 0.1 that the agent
fails to move toward its desired direction. The agent’s goal is to
reach the upper right corner of the maze as soon as possible starting
from the bottom left corner. The immediate reward for the agent
is 0, unless the agent arrives at the goal state, where it is +1. Each
episode starts from the initial state S and ends with the goal state G.
The parameter settings of Q-learning are the same for all approaches:
learning rate α=0.01, discount factor γ=0.99, ϵ-greedy is adopted as
the exploration strategy, where ϵ=0.1.

The demonstrations are collected from multiple experts. In this
experiment, there are three experts E1, E2 and E3, each claiming
that they have enough experience to complete the maze. As figure
2 shows, the maze has been divided into 3 areas. Each expert is
only a master in one are of the maze. However, the RL agent does
not know this in advance. We assume that E1, E2 and E3 know the
optimal policies of area 1, area 2 and area 3 respectively. They can
give optimal actions as the demonstration with a probability of 0.9 in
their corresponding areas. Furthermore, because each expert knows
nothing about the maze except their area of expertise, they move
randomly in the other two areas. From the perspective of the learning
agent, the experts’ ability is unknown. Besides, the learning agent
does not know the confidence of experts’ demonstrations. When
conflicting actions are suggested by different experts, the learning
agent is unable to know whose demonstration is right, and learn it
during the RL process.

For demonstration data collection, we generated 20 full demon-
strations from each expert via behaviour simulations, and removed

Figure 3: Performance comparison of TLQL and two baselines
in the domain of maze navigation. The graph shows the average
cumulative reward for an episode and the number of training
episodes.

Figure 4: Comparison of TLQL with different number of ex-
perts (i.e. TLQL with expert 1, TLQL with expert 1 and expert
2, and TLQL with three experts) and RL in the domain of maze
navigation

any duplicates. When applying TLQL to the maze navigation game
with conflicting demonstrations, the high-level Q-learning is used
to teach the agent which expert’s demonstration is more reliable in
each state. The low-level Q-learning teaches the agent to move in
the optimal direction through its interactions with the maze.

Figure 3 illustrates the learning curves of TLQL and two other
baselines: RL without prior knowledge and CHAT. TLQL and CHAT
use demonstrations from three experts. Figure 3 shows the changes of
cumulative reward. The figures clearly show that TLQL significantly
outperforms RL and CHAT from several perspectives. Jumpstart
is used to measure the average initial performance of the learning
agent. A higher jumpstart performance means that the learning agent
can benefit more from its prior knowledge in early stages of the
learning. As TLQL can make good use of conflicting demonstrations
to train the agent, its jumpstart performance is significantly better
than the baselines. The overall performance is another metric which
is measured by the area under the cumulative reward curve. Figure 3
indicates that no matter how many demonstrators are involved in
the model, TLQL always performs better than RL and CHAT. In
addition, as the agent trained by TLQL can achieve a relatively good
performance very quickly, its asymptotic performance is superior to
RL and CHAT.
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Figure 5: Coloured flags visiting problem domain. The learning
agent’s starting location is labelled with S. Its goal is to visit 9
coloured and numbered flags that are located in a 10*10 grid
world.

Figure 6: Three correct sequence of visiting flags

Moreover, we also compared the learning performance of TLQL
with different demonstrators. Figure 4 shows that the training agent
can perform better by increasing the number of demonstrators.
Although more demonstrators imply more contradictions among
demonstrations, TLQL can deal with conflicting demonstrations ef-
fectively. Therefore, the learning agent can gain more knowledge
from the demonstrations involving more experts.

4.2 Coloured flags visiting
In the previous experiment, all experts shared the same goal (i.e.
completing the maze) and they were skilled in different areas of the
state space. However, domain knowledge conflicts may result from
more complex scenarios. For example, in the Super Mario game
collecting coins, killing enemies and moving towards the goal are
three different tasks. Players perform all of these tasks to obtain a
higher score, which is the ultimate goal of the game. Supposing there
are three experts. Each of them is only good at achieving one specific
task while ignoring the other tasks of the goal. In this case, experts
with different knowledge may suggest different optimal actions for
the same state. Our two-level Q-learning algorithm can also handle
this kind of conflicting demonstration problem.

In our experiment, we chose coloured flags visiting as the domain
for the aforementioned scenario. In coloured flags visiting an agent’s
goal is to visit all flags in a given order in a discrete 10*10 grid
world. A picture of this domain is shown in Figure 5. There are a
total of 9 flags of three different colours and labelled with digits.
An agent starts from the "S" position which is located at the bottom
left corner of the maze. At each time step, the agent can move in
8 directions: up, down, left, right, left up, left down, right up and
right down. There is a probability of 0.1 that the agent’s move in the
desired direction is unsuccessful and the agent remains in its original

Figure 7: Three demonstrators and their view of the environ-
ment

position. The agent’s goal is to visit all flags as soon as possible and
also obey some rules: (1) the agent needs to visit all flags of the same
colour in ascending order; (2) for flags with different colours, there
is no order requirement; (3) incorrect (i.e. out of order) visits of flag
positions are ignored and not taken into account. Figure 6 shows
three correct examples satisfying the above rules. An entire episode
is finished when the agent has visited all flags in the right order. At
this time, the agent receives a reward equal to +1. No other rewards
are given during the episode. Like in the first experiment, we set
learning rate =0.01 and discount factor =0.99 for all approaches. We
also adopt ϵ-greedy as the exploration strategy, where =0.1.

We define three experts (denoted by E1, E2 and E3) to provide
demonstrations for playing this flag visiting game. E1, E2 and E3
are skilled in visiting yellow, blue and green flags respectively. Note
that each expert’s goal and the learning agent’s goal are not the same.
The learning agent is required to visit all flags while each expert
only needs to visit the flags with one of the three colours. Thus every
expert only focuses on how to complete its individual task as soon as
possible rather than the ultimate goal of the game. Figure 7 depicts
expert E1, E2 and E3 and the environment from their perspective.

20 demonstrations were generated from each of the three experts,
with 10% random noise added in each. As E1, E2 and E3 have
different goals, they are likely to take different actions for a given
cell of the grid. From the perspective of the learning agent, all
these suggested actions (i.e. demonstrations) could be helpful for
achieving its goal. This is because each one of the suggested actions
is an optimal choice for a specific task. Faced with the conflicting
demonstrations from E1, E2 and E3, the learning agent needs to
learn from these demonstrations and decide what action to take in
each state. Incorporating noise into demonstrations, we assume that
experts cannot give the optimal actions with a probability of 0.1, and
instead propose a random action.

Performance comparisons regarding the cumulative reward and
the number of steps of TLQL and the two baselines (i.e. regular Q-
learning with no prior knowledge and CHAT) are shown in Figure 8.
Like the results of experiment 1, learning curves of TLQL still
outperform the curves of regular Q-learning and CHAT. Furthermore,
Figure 9 shows that the learning performance becomes better with
an increasing number of experts.

The reason for the much higher initial performance with three
experts (than, e.g., with two experts) is that without having demon-
strations of all three experts, there is a crucial part of the task infor-
mation missing. Just using the advice of two experts is not sufficient
to complete the overall task immediately. This is different from the
maze navigation domain, where one expert alone can still help the
agent to complete the overall task.
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Figure 8: Performance comparison of TLQL and two baselines
in the domain of coloured flags visiting. The cumulative reward
and the number of steps are as functions of time (number of
training episodes).

Figure 9: Comparison of TLQL with different number of ex-
perts and regular Q-learning in the domain of coloured flags
visiting

5 CONCLUSION
In this paper we propose a novel algorithm, two-level Q-learning
(TLQL), that incorporates demonstrations from multiple experts with
varying expertise into reinforcement learning. The expert demonstra-
tions are used to bias the exploration of the RL agent. The TLQL
algorithm adds a Q-table to record the degree of trust in an expert for
different states. The RL agent learns a policy of selecting an expert
simultaneously to learning the policy for maximising the cumulative
reward. To keep the high-level and low-level Q-tables synchronised,
we update both those to Q-tables in each agent-environment interac-
tion.

Notably, the value of ⟨state,RL⟩ and values of ⟨state,otherexpert⟩
will be updated for each sample. The algorithm always keeps the
value of ⟨state,RL⟩ equal to the low-level Q-table.

When using demonstrations from multiple experts, conflicting ad-
vice can often occur. In our experiments we focused on two common
reasons for such conflicts: (1) individuals are experts in different
parts of state space; (2) individuals are skilled in different sub-tasks
of the goal.

We evaluated our proposed algorithm in a maze navigation do-
main and a coloured flags visiting domain. The results of our ex-
periments showed that the TLQL significantly outperforms regular
Q-learning without knowledge and the state-of-the-art CHAT algo-
rithm in terms of jumpstart, overall performance, and asymptotic
performance.

Future work includes constructing a distance measure on any
conflicts. In this way clusters of similar experts could be treated
as one expert in the high-level Q-table. Applying clustering tech-
niques could also provide a hyper-parameter, i.e. the number of
clusters, which can be used to trade off sample efficiency of RL and
computational cost.
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