
Maze Navigation using Neural Networks Evolved with
Novelty Search and Differential Evolution

Karl Mason∗
National University of Ireland Galway

Galway, Ireland
k.mason2@nuigalway.ie

Jim Duggan
National University of Ireland Galway

Galway, Ireland
james.duggan@nuigalway.ie

Enda Howley
National University of Ireland Galway

Galway, Ireland
ehowley@nuigalway.ie

ABSTRACT
Novelty search is a recent approach to evolving neural networks
that focuses on searching for networks with new and different be-
haviour rather than solely focusing on finding the network with the
best objective fitness. In reality the concept of novelty is short lived
in the sense that nothing stays new indefinitely. Algorithms that
archive the best solutions to inform the search are therefore faced
with the problem that the novelty scores of these archived solutions
will change from generation to generation. This research aims to
address this issue by proposing two methods of adjusting novelty
scores of archived solutions: 1) Novelty Decay. 2) Recalculating
Archived Novelty. Novelty decay enables novelty scores to decay
overtime thus enabling the search algorithm to progress while re-
calculating novelty scores of the archived solutions updates the
novelty of these solutions at each generation. When tested on the
problem of maze navigation, it is observed that novelty decay and
recalculating archived novelty converge faster than both objective
search and novelty search alone. Recalculating archived novelty
and novelty decay perform statistically equal to one another.

KEYWORDS
Neuroevolution; Novelty Search; Neural Networks; Evolutionary
Algorithms; Differential Evolution

1 INTRODUCTION
The notion of evolving a neural network by selecting for behavioural
novelty rather than fitness has received a lot of attention since it
was first proposed [13]. The reason for the success of novelty search
is that by ignoring the objective during the search process, a more
diverse range of behaviours is explored. The process of searching
for different behaviours gives the evolutionary algorithm a better
ability to explore. This enhanced exploration give novelty search
an advantage when problems are highly deceptive.

This research focuses on tailoring novelty search for evolution-
ary algorithms that keep a record of the best found solutions and
use these previous solutions to inform the search process. A typi-
cal example of this would be evolutionary algorithms that utilize
elitism, the process of passing solutions with the highest fitness
directly onto the next generation unchanged. This practise has been
shown to be highly effective for the standard objective based search
[1].

Applying novelty search to algorithms that keep a record of the
best found solutions to inform the search, e.g. by using elitism,
raises the question: is a behaviour that was novel at the generation
it was first observed still considered novel in future generations?
∗Corresponding Author

If the solution with the highest novelty score is considered the
best solution in novelty search, it will likely be used to create
new solutions. These solutions are then likely to produce similar
behaviour to the original highly novel solution. However if these
new solutions have similar behaviour to the original highly novel
solution, by definition the original solution that is passed through
to subsequent generations is not novel anymore.

It should be noted here that this is not an issue for algorithms
that are memory-less, as these algorithms do not consider previous
solutions at future generations. Therefore there is no concern as
to whether or not the behaviour of these solutions is still novel.
There are however many examples of algorithms that do have a
memory of best solutions: elitism used in genetic algorithms and
genetic programming [1], the global best and personal best solu-
tions are recorded and used to update particles in particle swarm
optimisation [2] and the agents in differential evolution only update
their solution if the new solution produced is better than their best
previous one [26].

This research will explore two methods of addressing this issue:
1) To enable archived novelty scores to decay at each generation.
2) To recalculate the novelty of archived novelty scores at each
generation. By simply allowing the novelty scores of recorded be-
haviours to decay over time, the novelty scores of previously novel
behaviours will degrade and therefore be replaced. This novelty
decay accounts for the fact that the concept of novelty is inherently
temporary and allows algorithms that utilize recorded best solu-
tions to find novel behaviors at subsequent generations. The second
method of recalculating archived novelty scores is a more compu-
tationally expensive approach, but will have the same effect of
accurately updating the novelty of previously observed behaviors.

In order to validate the proposed novelty decay and recalculat-
ing archived novelty approaches, this research will apply novelty
search to differential evolution (DE) [26]. This is a state of the art
evolutionary optimisation algorithm for real valued optimisation
problems. This makes it well suited to optimising the weights of a
neural network. DE also keeps a record of the best found solutions,
which makes it ideal to test out the proposed novelty decay and
recalculating archived novelty techniques. Finally novelty search
has not yet been applied to DE, this paper aims to utilize novelty
search to significantly improve the performance of DE like it has
for other algorithms [8, 28]. In order to test the performance of
novelty search with differential evolution, this research will con-
sider the maze navigation problem domain which is routinely used
to evaluate the performance of evolutionary neural networks and
novelty search.

The contributions of this paper are:

(1) To apply novelty search to differential evolution.



(2) The evaluation of two techniques, novelty decay and recal-
culating archived novelty, to better facilitate the application
of novelty search to algorithms with a memory of the best
found solutions.

2 BACKGROUND
This section will give brief overview of the areas of: novelty search,
neuroevolution and differential evolution.

2.1 Novelty Search
Traditionally in machine learning and optimisation, a solution is
judged based on its ability to satisfy an objective. This measure of
quality, or fitness, is also what is used to inform and guide the algo-
rithm in its search for better solutions. Novelty search on the other
hand, uses the novelty or uniqueness of a solution or behaviour
as a means to guide the search process. Novelty search was first
proposed by Lehman and Stanley in 2011 [13]. It has since had
many successful applications including: controlling underwater
soft robots [4], airfoil design [23], classification [21] and computer
games [15].

Novelty can be defined as how different a behaviour is with
respect to other behaviours. Equation 1 shows how novelty is cal-
culated in novelty search. Where nov is the novelty score given to
the current behaviour x, k is the number of nearest neighbours and
µi is the behaviour observed by the ith nearest neighbour.

nov(x) =
1
k

k∑
i=0

dist(x , µi ) (1)

For the maze problem domain considered in this research, the
distance measure between two behaviours is the Euclidean distance
between the final positions of the robot for each behaviour. There
have been other proposed measures of behavioural distance, e.g.
hamming distance, normalized compression distance, entropy, etc
[6, 10]. This paper will utilize the Euclidean distance, as it is the
natural choice for the maze problem domain.

This research will implement the normalized novelty score pro-
posed by Cuccu and Gomez as it is a more general measure of
novelty at each generation [5]. This normalized novelty is calcu-
lated using Equation 2.

nov(x) =
nov(x) − novmin
novmax − novmin

(2)

A sample of some of the current research in novelty search
include combining novelty search with deep neural networks to
identify interesting differences in images [22], applying novelty
search to deep reinforcement learning [3] and applying novelty
search to cooperative coevolutionary algorithms [9].

2.2 Neuroevolution
A simple definition of neuroevolutionwould be the use evolutionary
algorithms to search for the optimal neural network configuration
to approximate some function [29]. Neuroevolution algorithms have
a wide range of applications including Atari games [27], pattern
recognition [11] and robotics [12].

Neuroevolution methods generally consist of a population of
network configuration. The population of networks iteratively im-
proves over time as a result of the application of evolutionary
operators, i.e. selection, crossover, mutation, etc. In neuroevolu-
tion, aspects of the neural network design are encoded into geno-
type. These typically contain network information such as synaptic
weight values, number of neurons, connectivity, etc. These network
traits form the genotype. These genotypes are evolved over a series
of generations. The phenotype is the expression of the genotype.
In neuroevolution, the phenotype is the actual neural network.

2.3 Differential Evolution
The Differential Evolution (DE) algorithm is an evolutionary optimi-
sation algorithm [26]. Differential evolution has been successfully
applied to evolve neural networks for many different problems, in-
cluding: control [17], tire contact prediction [7], power generation
[16, 19], air conditioning load forecasting [14], CPU forecasting [20]
and wind power forecasting [18]. The algorithm uses the principles
of evolutionary computing to solve global real valued optimisation
problems. The algorithm creates N agents with random solutions
to the optimisation problem. At each generation, each agent selects
three other distinct agents A, B and C. For each dimension i of
the problem, if rand[0, 1] < CR or i = indexR the new solution
variable yi = ai + F × (bi − ci ) otherwise yi = xi . Where CR is
the crossover rate, D is the number of dimensions, R is a random
index ∈ D, F is the differential weight, ®x and ®y are the current and
new solutions of the current agent and ®a, ®b and ®c are the current
solutions of agents A, B and C. If the fitness of the new solution ®y
is better than the previous solution ®x , ®y replaces ®x . This is repeated
until a predetermined number of evaluations has been completed.

One of the contributions of this research is the application of
novelty search to differential evolution. Novelty search has already
been successfully applied to many other algorithms such as parti-
cle swarm optimisation [8] and grammatical evolution [28]. It is
hypothesized that differential evolution can also be enhanced by
combining it with novelty search. There are currently no examples
of this in the literature.

3 NOVELTY DECAY AND RECALCULATING
ARCHIVED NOVELTY

The fundamental driving force behind novelty search is that the
most novel behaviours survive and move onto the next generation
rather than the fittest. This has been shown to be an effective
strategy [13].

This research builds on this philosophy by introducing the idea of
novelty decay, i.e. enabling novelty scores to degrade as generations
pass. Novelty decay accounts for the fact that the concept of novelty
itself is a temporary phenomenon. What is meant by this is that
something that is "new" nowwill not remain new indefinitely. Many
algorithms keep a record of the best solutions or behaviours in order
to inform their search. For example genetic algorithms use elitism
and differential evolution uses the agent’s position to keep a record
of the best solutions and aid the search process. For novelty search,
the best solutions are those with the highest novelty score.

Novelty search is commonly applied to the NEAT algorithm [25].
Novelty search with novelty decay may not be appropriate for the

2



NEAT algorithm however. This is because novelty decay relies on
an algorithm keeping a record of the best (most novel) solutions.
The original implementation of NEAT does not use elitism as the
entire population is replaced by the offspring in the next generation.
This is partly why differential evolution was selected to evolve the
network weights in this research. DE only replaces the current
solutions if they are improved upon. This means that network
configurations can be remembered by the DE for many generations
if the new solutions do not improve upon the existing solutions. The
DE algorithm was also selected because as previously stated, it is a
state of the art evolutionary algorithm and there are no examples
in the literature applying novelty search to DE.

At each generation of the DE algorithm, each agent generates a
new solution (detailed in the previous section). If this solution is
more novel than the agent’s current solution, the current solution is
replaced. Consider however the situation where an agent discovers
a very novel (but still sub optimal) behaviour. This solution will
have a very high novelty score. This will cause the algorithm to
produce new solutions based on this solution with high novelty.
This high novelty score creates a problem however when calculated
using Equation 1. If the original behaviour has an exceptionally
high novelty score, new solutions in subsequent generations with
behaviours that have high novelty but not as high as the original
behaviour will be ignored as they are not as high as the original
behaviour. This is problematic as the algorithm will not consider
these the new behaviours. This can be mitigated to some extent by
utilizing the normalized novelty score in Equation 2. This places
an upper bound on the novelty score so that the maximum novelty
score is 1. This normalized novelty score does not fix this problem
however as the DE agents will still face the issue of finding novel
solutions with a normalized novelty score of 1 that do not improve
upon their previous novelty score of 1 and are therefore discarded.

It is this problem that motivates novelty decay. Novelty decay is
applied to DE by introducing a δ value that is applied to the novelty
scores from the previous generation. This is described in Equation
3.

nov(x)t = nov(x)t−1 × δ (3)

By enabling the novelty scores to decay over time, the DE algo-
rithm acknowledges that behaviours that were novel in previous
generations are not necessarily novel in the future. This novelty δ
value stops the algorithm from stagnating on previous novel solu-
tions that were novel in the generation they were first observed but
not in subsequent generations. The advantage of novelty decay is
that it is computationally cheap and straightforward to implement.

The second method that will be evaluated as a means of address-
ing the problem of changing archived novelty is the Recalculating
Archived Novelty scores (RAN) method. This method simply in-
volves recalculating the novelty scores of all archived behaviors at
each generation to check if they are still novel. This method has
the advantage of ensuring that novel behaviours will remain in
the archive if they remain novel in subsequent generations. The
disadvantage of this approach is that it is more computationally
expensive. In the case of evolving a neural network with differential
evolution, this will result in doubling the number of novelty score
calculations.

4 EXPERIMENTS
Novelty search was first proposed and evaluated using a maze envi-
ronment. The evolutionary neural network must learn to navigate
its way through a maze to a target location in a finite number of
steps. The nature of the maze environment also lends itself to calcu-
lating behavioural novelty, i.e. the coordinates of the robot within
the maze. For these reasons, the maze environment seems like a
natural choice of problem to test the proposed novelty decay.

4.1 Problem Mazes
In order to validate the proposed novelty decay approach, two
mazes will be considered in this paper. Figures 1 and 2 illustrate
the normal and hard maze design respectively. The normal maze is
more straightforward. The robot’s evolved network must navigate
from its starting point in the north west corner of the map to the
target location in the south east corner of themap. There are various
dead ends along the way that the robot must navigate however the
robot for the most part is moving in a south easterly direction while
meandering around the maze boundaries. The hard map is much
more deceptive. The robot is initialized in the south west corner
of the map and must navigate to the north west corner of the map
where its target is located. As Figure 2 shows however, the robot
must first head to the south east corner of the map where there
is a narrow opening and then to the north east corner of the map
where it can pass through to the target location. The robot must
move in a direction away from the target location at many points
in the maze in order to finally make it to the target. These maps are
similar to those previously used to test real-time NEAT [24] and
novelty search [13].

Figure 1: Normal Problem Maze. The robot must navigate its
way from the north west of the map to the south east.

4.2 Maze Navigation
The simulated robot is equipped with a number of sensors in or-
der to detect its environment. Figure 3 illustrates these sensors in
relation to the robot. These include 6 rangefinder sensors facing:
straight ahead, behind, left, right and also diagonally to the front
left and right. The purpose of these rangefinders is to detect how
far away the robot is from the maze boundaries. The robot also has
a pie-slice radar sensor. This allows the robot to orientate its self
in relation to the target. One of the 4 radar sensors will activate if
the target falls within its detection region, thus telling the robot if

3



Figure 2: Hard Problem Maze. The robot must navigate its way
from the south west of the map to the north west.

the target is to the left, in front, etc. Figure 4 depicts the network
that must be evolved to navigate the maze. It consists of 10 inputs
relating to the 6 range finding sensors and the 4 radar sensors. The
network has 2 outputs. These correspond to instructions telling the
robot to go left/right and forward/backward. It was found that a re-
current network with 2 hidden neurons was sufficient for the robot
to navigate the maze. This corresponds to 28 connection weights
that must be optimised.

4.3 Experimental Settings
The fitness of any given network is simply defined as Euclidean
distance between the robot’s final position and the target location,
which the robot must minimize. The robot is determined to have
reached the target if its Euclidean distance to the target is less than a
predefined amount. The maximum number of network evaluations
is 200,000. The DE parameters are: CR = 0.9, F = 0.5 and No. agents
= 28.

5 RESULTS
Novelty search with novelty decay performs significantly better on
both maps when compared to novelty search without decay. Table 1
highlights the average fitness and standard deviation of each δ value.
This table reveals that novelty search with δ = 0.8 performs best
on the normal map, while novelty search with δ = 0.99 performs
best on the hard map. In terms of statistical significance, δ = 0.8
is the only statistically better decay value for the normal map (P
= 0.0079). Other δs have higher average fitness values but are not
significantly better. With regards to the hard map, the following
δ values perform statistically better than novelty search: δ = 0.99
(P = 0.0006), δ = 0.9 (P = 0.0004), δ = 0.8 (P = 0.0232), δ = 0.7 (P
= 0.0054) and δ = 0.6 (P = 0.0111). It is observed that many more
δ values perform statistically better on the hard map than on the

Figure 3: Robot Sensors. The robot has 6 rangefinder sensors and
4 radar sensors.

Figure 4: Neural Network Configuration. A fully connected
recurrent neural network with 10 inputs, 2 hidden neurons and 2
outputs.

normal map. This implies that novelty decay is more effective as
the problem difficulty increases.

The fitness function which has the highest fitness on both mazes
is the novelty search with recalculated archived novelty (RAN)
scores. Similar to novelty decay, RAN performs statistically better
than both novelty search alone and objective based search. When
comparing RAN with novelty decay, the average target to distance

4



achieved by RAN is statistically equal to that of the best performing
novelty decay.

Table 1: Average Target Distance of each Fitness Function

Fitness Normal Map Hard Map
Function Avg StDev Avg StDev

Objective 0.040 0.085 0.107 0.000
Novelty 0.022 0.036 0.041 0.050
RAN 0.005 0.007 0.005 0.013

δ = 0.99 0.017 0.027 0.010 0.023
δ = 0.9 0.020 0.053 0.011 0.009
δ = 0.8 0.006 0.009 0.021 0.022
δ = 0.7 0.011 0.038 0.018 0.009
δ = 0.6 0.028 0.064 0.019 0.019
δ = 0.5 0.017 0.013 0.024 0.026
δ = 0.2 0.035 0.042 0.077 0.041

Figures 5 and 6 illustrate the fitness convergence of novelty
search, objective search novelty seach with RAN and finally novelty
search with the best performing δ value as determined from Table
1 (δ = 0.8 and δ = 0.99 for normal and hard maps respectively).
For both maps it is observed that objective based search converges
the slowest, followed by novelty search alone. RAN and novelty
decay converge at very similar rates on the normal maze (Figure
5). When comparing convergence on the hard maze (Figure 6),
RAN converges faster than novelty decay. Each method converges
to a statistically equal distance to target. All variants of novelty
search were able to surpass the threshold target distance 0.05 (and
therefore complete themaze) for bothmazes. Objective based search
surpassed the target distance threshold for the normal map but
could not escape the cul-de-sac in the more deceptive hard map.

When evaluated on the normal map, novelty search with decay
value δ = 0.8 took 24,967 evaluations on average to reach the target
distance while novelty search with RAN took and average of 23,762
evaluations to reach the target. Novelty search alone required 44,352
evaluations, nearly double the amount of problem evaluations to
reach the target that novelty decay and RAN required. When tested
on the hard map, novelty search with decay value δ = 0.99 reached
the target distance in 54,517 evaluations. Novelty search with RAN
required far fewer evaluations than novelty decay, with a target
distance achieved after 28,179 evaluations. Both of these methods
are significantly faster at achieving the target distance than novelty
search alone, which required 138,801 evaluations.

The number of failed runs for each method is highlighted in
Table 2. This is out of a total number of 40 runs. It can be seen that
both novelty search with novelty decay and RAN fail to solve the
maze on fewer runs than both novelty search and objective search.
This table also demonstrates that there is no single fitness function
that doesn’t fail at least once.

In general, it is observed that a high δ value closer to 1 gives the
best performance on both maps. This is to be expected since lower
δ values shorten the lifetime of novelty scores more. This leads
to the algorithm forgetting very novel behaviours too quickly. An
insightful way to view the effect that the δ value has on the novelty
score is to look at the resulting novelty score half life, i.e. how many

Figure 5: Normal Maze Convergence.

Figure 6: Hard Maze Convergence.

Table 2: Number of Maze Failures for each Fitness Function

Fitness Normal Hard
Function Map Map

Objective 6 40
Novelty 4 14
RAN 0 1

δ = 0.99 1 2
δ = 0.9 1 0
δ = 0.8 0 2
δ = 0.7 1 0
δ = 0.6 3 2
δ = 0.5 1 3
δ = 0.2 4 25

generations it takes for half of the novelty score to decay. This is
the value T0.5 where δT0.5 = 0.5. A δ = 0.99 gives the novelty
score a half life of approximately T0.5 ≈ 69 generations. While a
δ = 0.8 gives the novelty score a half life of approximatelyT0.5 ≈ 3
generations. A δ = 0.99 gives the novelty score a significantly
longer than the half life for the δ = 0.8 value. The values δ = 0.8
and δ = 0.99 gave the best performance on the normal and hard
maps respectively. This is a memory in the order of 20 times shorter
for the normal map. This implies that a longer memory is more
advantageous for harder maps. This raises the question of what δ

5



value should be selected for problemswhere the problem difficulty is
not known? It is suggested in these cases to select larger δ values as
these value always result in statistically better or equal performance
to standard novelty search, as Tables 1 and 2 show.

In terms of the computational cost of the proposed methods,
RAN is more expensive than novelty decay. On the normal and
hard maze, RAN took on average 71 and 136 seconds respectively
to complete each run of 200,000 problem evaluations. Novelty de-
cay required 64 and 118 seconds respectively. Standard novelty
search required 62 and 119 seconds respectively while objective
based search completed the 200,000 problem evaluations in 56 and
107 seconds respectively. RAN is significantly slower to run than
all other fitness functions due to the extra computational cost of
recalculating the archived novelty scores. Novelty decay adds no
significant additional computational cost when compared to novelty
search alone. Objective based search is significantly computation-
ally cheaper than all other methods. As the results presented above
demonstrate however, objective based search is significantly worse
than all other fitness functions.

This research clearly demonstrates that novelty search is com-
patible with DE. All variants of novelty search outperform standard
objective based DE. The results in this section demonstrate that
simply implementing novelty search will improve upon objective
based search but does suffer from not updating novelty scores of
archived solutions. Both methods proposed to address this issue:
novelty decay and recalculating archived novelty, significantly im-
prove upon novelty search alone. Each method has advantages
and disadvantages. Novelty decay is computationally cheaper and
straightforward to implement while recalculating archived novelty
scores converges faster. In terms of final distance to target achieved,
these two methods perform statistically equal to one another when
evaluated over 40 runs. These results are important as the prob-
lem of changing novelty scores for archived solutions would occur
for other algorithms that incorporate a memory of previous good
solutions to inform the search, by using elitism for example. The
methods proposed in this paper would be applicable to other algo-
rithms such as genetic algorithms, grammatical evolution, genetic
programming, particle swarm optimisation, etc.

6 CONCLUSION
This paper has demonstrated that novelty search can augment the
performance of a differential evolution trained neural network. It is
demonstrated that simply applying novelty searchwithout updating
archived solutions will result in sub optimal performance. Both en-
abling novelty scores to decay over time and recalculating archived
novelty scores at each generation will increase performance. It is
observed that problems with different levels of difficulty require
different levels of novelty decay for DE to perform optimally. Gen-
erally speaking higher δ values perform better as they give the
system a longer memory. Novelty decay is computationally cheap
and straight forward to implement. Recalculating archived nov-
elty scores converges faster but is more computationally expensive.
Each provide statistically equal performance.

The contributions of the paper can be summarized as:

(1) It is demonstrated that the performance of differential evo-
lution is increased by combining it with any novelty search
variant.

(2) Twomethods of updating the novelty scores of archived solu-
tions are proposed: novelty decay and recalculating archived
novelty. Both of these methods significantly improve upon
novelty search alone.

A potential route for future work would be to explore dynami-
cally adjusting the δ value during the evolutionary process. Differ-
ent problems require different δ values for novelty decay to perform
optimally. It possible that dynamically adjusting the δ value, as the
network is evolved, to adapt to the problem difficulty would remove
the issue of selecting the most effective δ value.

It is also hoped to apply the methods proposed in this paper to
other algorithms with memory of the best solution such as genetic
algorithms, grammatical evolution, genetic programming, particle
swarm optimisation, etc.

REFERENCES
[1] Chang Wook Ahn and Rudrapatna S Ramakrishna. 2003. Elitism-based compact

genetic algorithms. IEEE Transactions on Evolutionary Computation 7, 4 (2003),
367–385.

[2] Daniel Bratton and James Kennedy. 2007. Defining a standard for particle swarm
optimization. In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE. IEEE, 120–
127.

[3] Edoardo Conti, VashishtMadhavan, Felipe Petroski Such, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. 2017. Improving Exploration in Evolution Strategies for
Deep Reinforcement Learning via a Population of Novelty-Seeking Agents. arXiv
preprint arXiv:1712.06560 (2017).

[4] Francesco Corucci, Marcello Calisti, Helmut Hauser, and Cecilia Laschi. 2015.
Evolutionary discovery of self-stabilized dynamic gaits for a soft underwater
legged robot. In Advanced Robotics (ICAR), 2015 International Conference on. IEEE,
337–344.

[5] Giuseppe Cuccu and Faustino Gomez. 2011. When novelty is not enough. Appli-
cations of evolutionary computation (2011), 234–243.

[6] Stephane Doncieux and Jean-Baptiste Mouret. 2013. Behavioral diversity with
multiple behavioral distances. In Evolutionary Computation (CEC), 2013 IEEE
Congress on. IEEE, 1427–1434.

[7] Carlos A Duchanoy, Marco A Moreno-Armendáriz, Leopoldo Urbina, Carlos A
Cruz-Villar, HiramCalvo, and J de J Rubio. 2017. A novel recurrent neural network
soft sensor via a differential evolution training algorithm for the tire contact
patch. Neurocomputing 235 (2017), 71–82.

[8] Diana F Galvao, Joel Lehman, and Paulo Urbano. 2015. Novelty-Driven Particle
Swarm Optimization. In International Conference on Artificial Evolution (Evolution
Artificielle). Springer, 177–190.

[9] Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. 2017. Novelty-
driven cooperative coevolution. Evolutionary computation 25, 2 (2017), 275–307.

[10] Faustino J Gomez. 2009. Sustaining diversity using behavioral information
distance. In Proceedings of the 11th Annual conference on Genetic and evolutionary
computation. ACM, 113–120.

[11] Benjamin Inden, Yaochu Jin, Robert Haschke, and Helge Ritter. 2012. Evolving
neural fields for problems with large input and output spaces. Neural Networks
28 (2012), 24–39.

[12] Matt Knudson and Kagan Tumer. 2011. Adaptive navigation for autonomous
robots. Robotics and Autonomous Systems 59, 6 (2011), 410–420.

[13] Joel Lehman and Kenneth O Stanley. 2011. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary computation 19, 2 (2011),
189–223.

[14] Gwo-Ching Liao. 2014. Hybrid improved differential evolution and wavelet
neural network with load forecasting problem of air conditioning. International
Journal of Electrical Power & Energy Systems 61 (2014), 673–682.

[15] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. 2013. Enhance-
ments to constrained novelty search: Two-population novelty search for gener-
ating game content. In Proceedings of the 15th annual conference on Genetic and
evolutionary computation. ACM, 343–350.

[16] Karl Mason, Jim Duggan, and Enda Howley. 2017. Evolving multi-objective
neural networks using differential evolution for dynamic economic emission
dispatch. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. ACM, 1287–1294.

6



[17] Karl Mason, Jim Duggan, and Enda Howley. 2017. Neural network topology and
weight optimization through neuro differential evolution. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion. ACM, 213–214.

[18] Karl Mason, Jim Duggan, and Enda Howley. 2018. Forecasting energy demand,
wind generation and carbon dioxide emissions in Ireland using evolutionary
neural networks. Energy 155 (2018), 705 – 720. https://doi.org/10.1016/j.energy.
2018.04.192

[19] Karl Mason, Jim Duggan, and Enda Howley. 2018. A multi-objective neural
network trained with differential evolution for dynamic economic emission
dispatch. International Journal of Electrical Power & Energy Systems 100 (2018),
201–221.

[20] Karl Mason, Martin Duggan, Enda Barrett, Jim Duggan, and Enda Howley. 2018.
Predicting host CPU utilization in the cloud using evolutionary neural networks.
Future Generation Computer Systems (2018).

[21] Enrique Naredo, Leonardo Trujillo, and Yuliana Martínez. 2013. Searching for
novel classifiers. In European Conference on Genetic Programming. Springer, 145–
156.

[22] Anh Nguyen, Jason Yosinski, and Jeff Clune. 2016. Understanding innovation
engines: Automated creativity and improved stochastic optimization via deep
learning. Evolutionary Computation 24, 3 (2016), 545–572.

[23] Edgar Reehuis, Markus Olhofer, Bernhard Sendhoff, and Thomas Bäck. 2013.
Novelty-guided Restarts for Diverse Solutions in Optimization of Airfoils. A
Bridge between Probability, Set-Oriented Numerics, and Evolutionary Computation,
EVOLVE 2013 (2013).

[24] Kenneth O Stanley, Bobby D Bryant, and Risto Miikkulainen. 2005. Real-time
neuroevolution in the NERO video game. IEEE transactions on evolutionary
computation 9, 6 (2005), 653–668.

[25] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[26] Rainer Storn and Kenneth Price. 1997. Differential evolution–a simple and
efficient heuristic for global optimization over continuous spaces. Journal of
global optimization 11, 4 (1997), 341–359.

[27] Felipe Petroski Such, VashishtMadhavan, Edoardo Conti, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. 2017. Deep Neuroevolution: Genetic Algorithms Are a
Competitive Alternative for Training Deep Neural Networks for Reinforcement
Learning. arXiv preprint arXiv:1712.06567 (2017).

[28] Paulo Urbano, Enrique Naredo, and Leonardo Trujillo. 2014. Generalization in
maze navigation using grammatical evolution and novelty search. In International
Conference on Theory and Practice of Natural Computing. Springer, 35–46.

[29] Xin Yao. 1999. Evolving artificial neural networks. Proc. IEEE 87, 9 (1999),
1423–1447.

7

https://doi.org/10.1016/j.energy.2018.04.192
https://doi.org/10.1016/j.energy.2018.04.192

	Abstract
	1 Introduction
	2 Background
	2.1 Novelty Search
	2.2 Neuroevolution
	2.3 Differential Evolution

	3 Novelty Decay and Recalculating Archived Novelty
	4 Experiments
	4.1 Problem Mazes
	4.2 Maze Navigation
	4.3 Experimental Settings

	5 Results
	6 Conclusion
	References

