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ABSTRACT
Disease detection on a large network of individuals is a challeng-

ing problem, as the health states of individuals are uncertain and

the scale of the problem renders traditional dynamic optimization

models impractical. Moreover, efficient use of diagnostic and labor

resources is a major concern, especially when the disease is preva-

lent in a resource-constrained region. In this paper, we propose:

(1) A new approach for modeling SEIS type diseases using a novel

belief-state representation, (2) a novel community and eigenvalue-

based algorithm (TRACE) to perform multi-round active screening.

We perform extensive experiments on real-world datasets which

emulate human contact, and illustrate significant benefits due to

TRACE.
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1 INTRODUCTION
Curable infectious diseases are responsible for millions of deaths

every year. While low-cost treatment programs are available, many

rely on patients to seek medical care (passive screening). However,
individuals mistake their symptoms for another condition and not

seek care. Public health agencies therefore engage in active screen-
ing, where individuals in the community are asked to undergo

diagnostic tests and are offered treatment if tests return positive

results [5]. However, it is costly to seek out at-risk individuals, and

active screening efforts are often limited to high risk groups such

as household TB contacts [2].

Our first contribution is a model of the active screening prob-

lem which considers the underlying disease dynamics. We focus

on recurrent infectious diseases (no permanent immunity) with

a latent stage (SEIS model of disease [6]), such as TB. Individuals

can be susceptible (S) (currently healthy, but may become exposed),

exposed (E), or infected (I). To the best of our knowledge, models

of multi-round active screening for SEIS diseases are missing in the

AI literature.

Our second contribution is a novel algorithm—TargetedResolution
of Active diseases using Communities and Eigenvalues (TRACE)—
to guide scalable active screening. In TRACE, we use network

community structure to form a community graph, and then we

select nodes to screen by maximizing the reduction of the largest

eigenvalue of a variant of the community graph. TRACE takes into

account the underlying disease dynamics and uncertainty of indi-

viduals’ health states. TRACE is easily adaptable to most SEIS or

SIS type diseases.

We illustrate the benefits of TRACE via extensive testing on real-

world human contact networks against various baselines across

a wide range of disease parameters (which also demonstrates its

applicability to various other diseases).

2 PROBLEM SETUP
DiseaseModel.We adopt a SEISmodel [6] formodeling the disease

dynamics. TB and many other diseases follow a SEIS pattern, where

treated individuals can relapse or become reinfected. The disease

dynamics are therefore given by:

Susceptible (S)
α−→ Exposed (E)

Exposed (E)
β
−→ Infected (I )

Infected (I )
c−→ Susceptible (S)

In the context of a graph of individuals, α is the edge-wise fixed

probability of a susceptible (S) individual (node) being exposed (E)
to the disease from an infected (I ) neighbor, β is the fixed probability

of an exposed (E) individual (node) becoming infected (I ), and c
is the probability of an infected (I ) individual (node) voluntarily
seeking and successfully completing treatment and returning to

the susceptible S stage. We assume that the treatment takes place

in one time period (∼half a year for TB).
Active Screening Model. We define k active screening agents

that are to be deployed at every timestep t to diagnose and treat

I and E individuals. Each individual is part of a (known) contact

network and is in one of the (unknown) health states {S,E, I }, and
infection spreads via the edges in the network. In every round, the

agents can either choose to screen a node i (action ai = 1) or not

(ai = 0). A screened node is observed to be in state S , E, or I , and
an unscreened node generates no observation.

The objective of themodel is to choose the budget-limited actions

at each time step in order to maximize the number of susceptible

individuals over T time-steps: max

∑T
t=0 R(st ), interpreted as the

total number of disease-free half years [4].

Belief States. The agents maintain a belief about the state of

every individual — bti = [bti,S ,b
t
i,E ,b

t
i, I ], where b

t
i, j is the probabil-

ity node i is in state j, starting with no information at t = 0. The

beliefs about the health states evolve over time as the agents gain

information about individuals. This belief update procedure is an

important and novel aspect of our proposed active screening model,

however not elaborated here due to space constraints.
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Algorithm 1 TRACE Algorithm

Input: Adjacency Matrix A of graph, Belief bt , Budget k
1: for all i ∈ {1, . . . ,n} do
2: Rti = σbti,E + b

t
i, I

3: Sort Rt and label each node as д1,д2, or д3

4: A, b
t
, size ← Coarsen(A,д1,д2,д3,bt )

5: U← DynamicEigen(A, b
t
, size,k)

6: if
∑
u∈U sizeu > k then

7: u′ ← the last selected super-node from U
8: κ = k −∑u∈U\u′ sizeu
9: A,bt ← remove all nodes in U\u′ from A,bt

10: a ← DynamicEigen(A,bt , 1,κ)
11: Active screen nodes {v | v ∈ a or v ∈ u for u ∈ U\u′}

Algorithm 2 DynamicEigen(A,bt ,w,k)

Input: Adjacency matrix A, belief b, functionw for weight of each

node, min total weight of nodes to remove k
1: V ← Number of vertex of input graph

2: for all i ∈ {1, . . . ,V } do
3: Ai, : = Ai, : ∗ (1 − bi,S ) ▷ Multiply ith row

4: for all i ∈ {1, . . . ,V } do
5: A′ ← A
6: A′i, : ← 0 , A′

:,i ← 0 ▷ Remove ith node

7: λi = LarдestEiдenvalue(A′)
8: Sort nodes ⟨v1, . . . ,vV ⟩ corresponding to increasing λi

9: return first h nodes such that

∑h
i=1w(vi ) ≥ k

3 ALGORITHM FOR ACTIVE SCREENING
We introduce a structured algorithm to generate an online POMDP

policy—Targeted Resolution of Active diseases using Communities

and Eigenvalues (TRACE)—that combines elements of three ap-

proaches (Max Belief, and eigenvalue based, and community based

methods) to identify the k individuals to actively screen at every

time-step. The complete TRACE algorithm is shown in Algorithm 1.

As we do not know the true health state of all nodes in the

network, we first assign an attractiveness score to each node (Rti =

σbti,E + b
t
i, I ) to reflect the effectiveness of intervening on the node.

The nodes with the highest one-third of Rt values are labeled д1
(group 1), the next one-third to be д2 (group 2), and the rest to be

д3 (group 3) (lines 1-3).

After labeling all nodes, locally similar nodes (nodes of the same

label that share an edge) are clustered into a super-node iteratively

using the known method of graph coarsening [3] (line 4).

Prior methods to minimize the largest eigenvalue greedily chose

nodes to delete in order to generate a graph with lower maximal

eigenvalue. Sincewe do not knowwhich nodes are infectedwith cer-

tainty, we augment this method by incorporating uncertainty (the

DynamicEigen sub-procedure) and finally choosing the k nodes to

screen through this process (lines 5-11).

4 EXPERIMENTS
We show results on only one network in this short abstract — In-
dia network [1]: A human contact network with n = 202 nodes,

collected from a rural village in India, a setting in which TB active

screening may take place (1/λ∗A ∼ 0.095). In all simulations, the

budget is k = 5% of the total population, and σ = 0.5.

Setup. In the real world, active screening is performed only after

conducting initial surveys on the prevalence and incidence of the

disease. To simulate this, we run our experiments in two stages —

Survey stage (t = 0 ∼ 10) and Active Screening stage (t = 11 ∼ 30).

We compare the benefit of the screening strategies over and above

no intervention (None), where in None the evolution of the health

states is based on disease dynamics with no active screening.

Results. Figure 1 shows the performance of the three approaches

that were combined to form TRACE, illustrating that no single ap-

proach is solely responsible for TRACE’s performance. TRACE’s

performance is both statistically and practically significant when

compared to the three approaches: (a)Dynamic Eigen (DE): Choose
the nodes using just Algorithm 2without any super-node formation;

(b)Max Belief (MB): Choose the nodes with the higher belief of

being infected in that time-step, i.e. bti, I ; (c)Community (Comm):
Choose the nodes by a 0-1 knapsack algorithm (knapsack weight =

budget k) after super-node formation.
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Figure 1: Performance by the components (India network)

Our proposed novel active screening model and an algorithm

(TRACE) to facilitate multi-round active screening for recurrent

diseases performs significantly better than the baselines and each

of its components individually in a variety of real-world inspired

settings.
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